
Embedded IDE Link™ 4
User’s Guide

For Use with Texas Instruments’ Code Composer Studio™

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded IDE Link™ User’s Guide

© COPYRIGHT 2002–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 Online only New for Version 1.0 (Release 13)
October 2002 Online only Revised for Version 1.1
May 2003 Online only Revised for Version 1.2
September 2003 Online only Revised for Version 1.3 (Release 13SP1+)
June 2004 Online only Revised for Version 1.3.1 (Release 14)
October 2004 Online only Revised for Version 1.3.2 (Release 14SP1)
December 2004 Online only Revised for Version 1.4 (Release 14SP1+)
March 2005 Online only Revised for Version 1.4.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.4.2 (Release 14SP3)
March 2006 Online only Revised for Version 1.5 (Release 2006a)
April 2006 Online only Revised for Version 2.0 (Release 2006a+)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 3.0 (Release 2007a)
September 2007 Online only Revised for Version 3.1 (Release 2007b)
March 2008 Online only Revised for Version 3.2 (Release 2008a)
October 2008 Online only Revised for Version 3.3 (Release 2008b)
March 2009 Online only Revised for Version 3.4 (Release 2009a)
September 2009 Online only Revised for Version 4.0 (Release 2009b)

Contents

Getting Started

1
Product Overview . 1-2
Automation Interface . 1-3
Project Generator . 1-4
Verification . 1-5
Product Features Supported for Each Processor Family . . 1-5

Configuration Information . 1-6
Verifying Your Code Composer Studio Installation 1-6

Software Requirements . 1-8

Automation Interface

2
Getting Started with Automation Interface 2-2
Introducing the Automation Interface Tutorial 2-2
Selecting Your Processor . 2-6
Creating and Querying Objects for CCS IDE 2-8
Loading Files into CCS . 2-10
Working with Projects and Data . 2-12
Closing the Links or Cleaning Up CCS IDE 2-18

Getting Started with RTDX . 2-20
Introducing the Tutorial for Using RTDX 2-21
Creating the ticcs Objects . 2-26
Configuring Communications Channels 2-29
Running the Application . 2-31
Closing the Connections and Channels or Cleaning Up . . . 2-38
Listing Functions . 2-41

v

Constructing ticcs Objects . 2-42
Example — Constructor for ticcs Objects 2-42

ticcs Properties and Property Values 2-44

Overloaded Functions for ticcs Objects 2-45

ticcs Object Properties . 2-46
Quick Reference to ticcs Object Properties 2-46
Details About ticcs Object Properties 2-48

Managing Custom Data Types with the Data Type
Manager . 2-54
Adding Custom Type Definitions to MATLAB 2-56

Project Generator

3
Introducing Project Generator . 3-2

Project Generation and Board Selection 3-3

Schedulers and Timing . 3-5
Configuring Models for Asynchronous Scheduling 3-5
Cases for Using Asynchronous Scheduling 3-6
Comparing Synchronous and Asynchronous Interrupt
Processing . 3-8

Using Synchronous Scheduling . 3-10
Using Asynchronous Scheduling . 3-10
Multitasking Scheduler Examples . 3-11

Project Generator Tutorial . 3-24
Creating the Model . 3-25
Adding the Target Preferences Block to Your Model 3-25
Specify Configuration Parameters for Your Model 3-29

vi Contents

Setting Code Generation Parameters for TI
Processors . 3-33

Setting Model Configuration Parameters 3-36
Target File Selection . 3-37
Build Process . 3-38
Custom Storage Class . 3-38
Report Options . 3-38
Debug Pane Parameters . 3-39
Optimization Pane Parameters . 3-40
Embedded IDE Link Pane Parameters 3-42
Default Project Configuration — Custom 3-47

Using Custom Source Files in Generated Projects 3-48
Preparing to Replace Generated Files With Custom
Files . 3-48

Replacing Generated Source Files with Custom Files When
You Generate Code . 3-50

Optimizing Embedded Code with Target Function
Libraries . 3-52
About Target Function Libraries and Optimization 3-52
Using a Processor-Specific Target Function Library to
Optimize Code . 3-54

Process of Determining Optimization Effects Using
Real-Time Profiling Capability . 3-55

Reviewing Processor-Specific Target Function Library
Changes in Generated Code . 3-56

Reviewing Target Function Library Operators and
Functions . 3-58

Creating Your Own Target Function Library 3-58

Model Reference . 3-59
How Model Reference Works . 3-59
Using Model Reference . 3-60
Configuring processors to Use Model Reference 3-62

vii

Verification

4
What Is Verification? . 4-2

Verifying Generated Code via Processor-in-the-Loop . . 4-3
What is Processor-in-the-Loop Cosimulation? 4-3
About the PIL Block . 4-4
Preparing Your Model to Generate a PIL Application 4-5
Setting Model Configuration Parameters to Generate the
PIL Application . 4-6

Creating the PIL Block Application from a Model
Subsystem . 4-6

Running Your PIL Application to Perform Cosimulation
and Verification . 4-7

PIL Issues and Limitations . 4-7

Profiling Code Execution in Real-Time 4-9
Overview . 4-9
Profiling Execution by Tasks . 4-10
Profiling Execution by Subsystems 4-12

System Stack Profiling . 4-17
Overview . 4-17
Profiling System Stack Use . 4-19

Exporting Filter Coefficients from FDATool

5
About FDATool . 5-2

Preparing to Export Filter Coefficients to Code
Composer Studio Projects . 5-4
Features of a Filter . 5-4
Selecting the Export Mode . 5-5
Choosing the Export Data Type . 5-6

viii Contents

Exporting Filter Coefficients to Your Code Composer
Studio Project . 5-9
Exporting Filter Coefficients from FDATool to the CCS IDE
Editor . 5-9

Reviewing ANSI C Header File Contents 5-12

Preventing Memory Corruption When You Export
Coefficients to Processor Memory 5-15
Allocating Sufficient or Extra Memory for Filter
Coefficients . 5-15

Example: Using the Exported Header File to Allocate Extra
Processor Memory . 5-15

Replacing Existing Coefficients in Memory with Updated
Coefficients . 5-16

Example: Changing Filter Coefficients Stored on Your
Processor . 5-17

Function Reference

6
Operations on Objects for CCS IDE 6-2

Operations on Objects for RTDX . 6-4

Functions — Alphabetical List

7

Block Reference

8
Block Library: idelinklib_ticcs . 8-2

Block Library: idelinklib_common 8-3

ix

Blocks — Alphabetical List

9

Configuration Parameters

10
Embedded IDE Link Pane . 10-2
Overview . 10-4
Export IDE link handle to base workspace 10-5
IDE link handle name . 10-7
Profile real-time execution . 10-8
Profile by . 10-10
Number of profiling samples to collect 10-12
Project options . 10-14
Compiler options string . 10-16
Linker options string . 10-18
System stack size (MAUs) . 10-20
Build action . 10-21
Interrupt overrun notification method 10-24
Interrupt overrun notification function 10-26
PIL block action . 10-27
Maximum time allowed to build project (s) 10-29
Maximum time to complete IDE operations (s) 10-31
Source file replacement . 10-33

Supported Processors

A
Supported Platforms . A-2
Product Features Supported by Each Processor or
Family . A-2

Coemulation Support . A-3
Supported Processors and Simulators A-3
Custom Board Support . A-4

Supported Versions of Code Composer Studio A-5

x Contents

Reported Limitations and Tips

B
Reported Issues . B-2
Demonstration Programs Do Not Run Properly Without
Correct GEL Files . B-3

Error Accessing type Property of ticcs Object Having Size
Greater Then 1 . B-3

Changing Values of Local Variables Does Not Take
Effect . B-4

Code Composer Studio Cannot Find a File After You Halt a
Program . B-4

C54x XPC Register Can Be Modified Only Through the PC
Register . B-6

Working with More Than One Installed Version of Code
Composer Studio . B-6

Changing CCS Versions During a MATLAB Session B-7
MATLAB Hangs When Code Composer Studio Cannot Find
a Board . B-7

Using Mapped Drives . B-9
Uninstalling Code Composer Studio 3.3 Prevents Embedded
IDE Link From Connecting . B-9

Index

xi

xii Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Configuration Information” on page 1-6

• “Software Requirements” on page 1-8

1 Getting Started

Product Overview

In this section...

“Automation Interface” on page 1-3

“Project Generator” on page 1-4

“Verification” on page 1-5

“Product Features Supported for Each Processor Family” on page 1-5

Embedded IDE Link™ software enables you to use MATLAB® functions to
communicate with Code Composer Studio™ software and with information
stored in memory and registers on a processor. With the ticcs objects, you
can transfer information to and from Code Composer Studio software and
with the embedded objects you get information about data and functions
stored in your signal processor memory and registers, as well as information
about functions in your project.

Embedded IDE Link lets you build, test, and verify automatically generated
code using MATLAB, Simulink®, Real-Time Workshop®, and the Code
Composer Studio integrated development environment. Embedded IDE
Link makes it easy to verify code executing within the Code Composer
Studio software environment using a model in Simulink software. This
processor-in-the-loop testing environment uses code automatically generated
from Simulink models by Real-Time Workshop® Embedded Coder™ software.
A wide range of Texas Instruments DSPs are supported:

• TI’s C2000™

• TI’s C5000™

• TI’s C6000™

With Embedded IDE Link , you can use MATLAB software and Simulink
software to interactively analyze, profile and debug processor-specific code
execution behavior within CCS. In this way, Embedded IDE Link automates
deployment of the complete embedded software application and makes it
easy for you to assess possible differences between the model simulation and
processor code execution results.

1-2

Product Overview

Embedded IDE Link consists of these components:

• Project Generator—generate C code from Simulink models

• Automation Interface—use functions in the MATLAB command window to
access and manipulate data and files in the IDE and on the processor

• Verification—verify how your programs run on your processor

With Embedded IDE Link, you create objects that connect MATLAB software
to Code Composer Studio software. For information about using objects, refer
to “Software Requirements” on page 1-8.

Note Embedded IDE Link uses objects. You work with them the way you
use all MATLAB objects. You can set and get their properties, and use their
methods to change them or manipulate them and the IDE to which they refer.

The next sections describe briefly the components of Embedded IDE Link
software.

Automation Interface
The automation interface component is a collection of methods that use the
Code Composer Studio API to communicate between MATLAB software and
Code Composer Studio. With the interface, you can do the following:

• Automate complex tasks in the development environment by writing
MATLAB software scripts to communicate with the IDE, or debug and
analyze interactively in a live MATLAB software session.

• Automate debugging by executing commands from the powerful Code
Composer Studio software command language.

• Exchange data between MATLAB software and the processor running
in Code Composer Studio software.

• Set breakpoints, step through code, set parameters and retrieve profiling
reports.

• Automate project creation, including adding source files, include paths, and
preprocessor defines.

1-3

1 Getting Started

• Configure batch building of projects.

• Debug projects and code.

• Execute API Library commands.

The automation interface provides an application program interface (API)
between MATLAB software and Code Composer Studio. Using the API, you
can create new projects, open projects, transfer data to and from memory on
the processor, add files to projects, and debug your code.

Project Generator
The Project Generator component is a collection of methods that use the Code
Composer Studio API to create projects in Code Composer Studio and generate
code with Real-Time Workshop. With the interface, you can do the following:

• Automated project-based build process

Automatically create and build projects for code generated by Real-Time
Workshop or Real-Time Workshop Embedded Coder.

• Customize code generation

Use Embedded IDE Link with any Real-Time Workshop system target file
(STF) to generate processor-specific and optimized code.

• Customize the build process

• Automate code download and debugging

Rapidly and effortlessly debug generated code in the Code Composer
Studio software debugger, using either the instruction set simulator or
real hardware.

• Create and build CCS projects from Simulink software models. Project
Generator uses Real-Time Workshop software or Real-Time Workshop
Embedded Coder software to build projects that work with C2000™
software, C5000™ software, and C6000™ software processors.

• Highly customized code generation with the system target file
ccslink_ert.tlc and ccslink_grt.tlc that enable you to use the
Configuration Parameters in your model to customize your generated code.

1-4

Product Overview

• Automate the process of building and downloading your code to the
processor, and running the process on your hardware.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded IDE Link combine to provide the
following verification tools for you to apply as you develop your code:

Processor in the Loop Cosimulation
Use cosimulation techniques to verify generated code running in an
instruction set simulator or real processor environment.

Execution Profiling
Gather execution profiling timing measurements with Code Composer Studio
to establish the timing requirements of your algorithm. See “Profiling Code
Execution in Real-Time” on page 4-9.

Product Features Supported for Each Processor
Family
Within the collection of processors that Embedded IDE Link supports, some
subcomponents of the product do not apply. For the complete list of which
features work with each processor or family, refer to “Product Features
Supported by Each Processor or Family” on page A-2.

1-5

1 Getting Started

Configuration Information
To determine whether Embedded IDE Link is installed on your system, type
this command at the MATLAB software prompt.

ver

When you enter this command, MATLAB software displays a list of the
installed products. Look for a line similar to the following:

Embedded IDE Link Version 4.x (Release Specifier)

To get a bit more information about the software, such as the functions
provided and where to find demos and help, enter the following command at
the prompt:

help ticcs

If you do not see the listing, or MATLAB software does not recognize the
command, you need to install Embedded IDE Link. Without the software, you
cannot use MATLAB software with the objects to communicate with CCS.

Note For up-to-date information about system requirements, see “Software
Requirements” on page 1-8.

Verifying Your Code Composer Studio Installation
To verify that CCS is installed on your machine and has at least one board
configured, enter

ccsboardinfo

at the MATLAB software command line. With CCS installed and configured,
MATLAB software returns information about the boards that CCS recognizes
on your machine, in a form similar to the following listing.

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- -------------

1-6

Configuration Information

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about any boards, open
your CCS installation and use the Setup Utility in CCS to configure at least
one board.

As a final test, start CCS to ensure that it starts up successfully. For
Embedded IDE Link to operate with CCS, the CCS IDE must be able to
run on its own.

Embedded IDE Link uses objects to create:

• Connections to the Code Composer Studio Integrated Development
Environment (CCS IDE)

• Connections to the RTDX™ (RTDX) interface. This object is a subset of the
object that refers to the CCS IDE.

Concepts to know about the objects in this toolbox are covered in these
sections:

• Constructing Objects

• Properties and Property Values

• Overloaded Functions for Links

Refer to MATLAB Classes and Objects in your MATLAB documentation for
more details on object-oriented programming in MATLAB software.

Many of the objects use COM server features to create handles for working
with the objects. Refer to your MATLAB documentation for more information
about COM as used by MATLAB software.

1-7

1 Getting Started

Software Requirements
For detailed information about the software and hardware required to use
Embedded IDE Link software, refer to the Embedded IDE Link system
requirements areas on the MathWorks Web site:

• Requirements for Embedded IDE Link:
www.mathworks.com/products/ide-link/requirements.html

• Requirements for use with Code Composer Studio:
www.mathworks.com/products/ide-link/ti-adaptor.html

1-8

http://www.mathworks.com/products/ide-link/requirements.html
http://www.mathworks.com/products/ide-link/ti-adaptor.html

2

Automation Interface

• “Getting Started with Automation Interface” on page 2-2

• “Getting Started with RTDX” on page 2-20

• “Constructing ticcs Objects” on page 2-42

• “ticcs Properties and Property Values” on page 2-44

• “Overloaded Functions for ticcs Objects” on page 2-45

• “ticcs Object Properties” on page 2-46

• “Managing Custom Data Types with the Data Type Manager” on page 2-54

2 Automation Interface

Getting Started with Automation Interface

In this section...

“Introducing the Automation Interface Tutorial” on page 2-2

“Selecting Your Processor” on page 2-6

“Creating and Querying Objects for CCS IDE” on page 2-8

“Loading Files into CCS” on page 2-10

“Working with Projects and Data” on page 2-12

“Closing the Links or Cleaning Up CCS IDE” on page 2-18

Introducing the Automation Interface Tutorial
Embedded IDE Link provides a connection between MATLAB software and
a processor in CCS. You can use objects to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you debug and develop your application. Another
possible use for automation is creating MATLAB scripts that verify and
test algorithms that run in their final implementation on your production
processor.

Before using the functions available with the objects, you must select a
processor to be your processor because any object you create is specific to
a designated processor and a designated instance of CCS IDE. Selecting
a processor is necessary for multiprocessor boards or multiple board
configurations of CCS.

When you have one board with a single processor, the object defaults to the
existing processor. For the objects, the simulator counts as a board; if you
have both a board and a simulator that CCS recognizes, you must specify
the processor explicitly.

To get you started using objects for CCS IDE software, Embedded IDE Link
includes a tutorial that introduces you to working with data and files. As you
work through this tutorial, you perform the following tasks that step you
through creating and using objects for CCS IDE:

2-2

Getting Started with Automation Interface

1 Select your processor.

2 Create and query objects to CCS IDE.

3 Use MATLAB software to load files into CCS IDE.

4 Work with your CCS IDE project from MATLAB software.

5 Close the connections you opened to CCS IDE.

The tutorial provides a working process (a workflow) for using Embedded IDE
Link and your signal processing programs to develop programs for a range
of Texas Instruments™ processors.

During this tutorial, you load and run a digital signal processing application
on a processor you select. The tutorial demonstrates both writing to memory
and reading from memory in the ““Working with Projects and Data” on page
2-12” portion of the tutorial.

You can use the read and write methods, as described in this tutorial, to read
and write data to and from your processor.

The tutorial covers the object methods and functions for Embedded IDE Link.
The functions listed in the first table apply to CCS IDE independent of the
objects — you do not need an object to use these functions. The methods
listed in the second and third table requires a ticcs object that you use in the
method syntax:

Functions for Working With Embedded IDE Link
The following functions do not require a ticcs object as an input argument:

Function Description

ccsboardinfo Return information about the boards that CCS
IDE recognizes as installed on your PC.

ticcs Construct an object to communicate with
CCS IDE. When you construct the object you
specify the processor board and processor.

2-3

2 Automation Interface

Methods for Working with ticcs Objects
The methods in the following table require a ticcs object as an input
argument:

Method Description

address Return the address and page for an
entry in the symbol table in CCS
IDE.

display Display the properties of an object to
CCS IDE and RTDX.

halt Terminate execution of a process
running on the processor.

info Return information about the
processor or information about open
RTDX channels.

isrtdxcapable Test whether your processor
supports RTDX communications.

isrunning Test whether the processor is
executing a process.

read Retrieve data from memory on the
processor.

restart Restore the program counter (PC)
to the entry point for the current
program.

run Execute the program loaded on the
processor.

visible Set whether CCS IDE window is
visible on the desktop while CCS
IDE is running.

write Write data to memory on the
processor.

2-4

Getting Started with Automation Interface

Methods for Embedded Objects
The methods in the following table enable you to manipulate programs and
memory with an embedded object:

Method Description

list Return various information listings
from Code Composer Studio
software.

read Read the information at the location
accessed by an object into MATLAB
software as numeric values.
Demonstrated with a numeric,
string, structure, and enumerated
objects.

write Write to the location referenced
by an object. Demonstrated with
numeric, string, structure, and
enumerated objects.

Running Code Composer Studio Software on Your Desktop
— Visibility
When you create a ticcs object , Embedded IDE Link starts CCS in the
background.

When CCS IDE is running in the background, it does not appear on your
desktop, in your task bar, or on the Applications page in the Task Manager.
It does appear as a process, cc_app.exe, on the Processes tab in Microsoft®

Windows Task Manager.

You can make the CCS IDE visible with the function visible. The function
isvisible returns the status of the IDE—whether it is visible on your
desktop. To close the IDE when it is not visible and MATLAB software is not
running, use the Processes tab in Microsoft Windows Task Manager and
look for cc_app.exe.

If a link to CCS IDE exists when you close CCS, the application does not close.
Microsoft Windows software moves it to the background (it becomes invisible).

2-5

2 Automation Interface

Only after you clear all links to CCS IDE, or close MATLAB software, does
closing CCS IDE unload the application. You can see if CCS IDE is running in
the background by checking in the Microsoft Windows Task Manager. When
CCS IDE is running, the entry cc_app.exe appears in the Image Name list
on the Processes tab.

When you close MATLAB software while CCS IDE is not visible, MATLAB
software closes CCS if it started the IDE. This happens because the operating
system treats CCS as a subprocess in MATLAB software when CCS is not
visible. Having MATLAB software close the invisible IDE when you close
MATLAB software prevents CCS from remaining open. You do not need to
close it using Microsoft Windows Task Manager.

If CCS IDE is not visible when you open MATLAB software, closing MATLAB
software leaves CCS IDE running in an invisible state. MATLAB software
leaves CCS IDE in the visibility and operating state in which it finds it.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB software
command line or entering the functions as described in the following tutorial
sections.

To run the tutorial in MATLAB software, click run ccstutorial. This
command opens the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next portion of the lesson. The interactive tutorial covers the same
information provided by the following tutorial sections. You can view the
tutorial M-file used here by clicking ccstutorial.m.

Selecting Your Processor
Links for CCS IDE provides two tools for selecting a board and processor
in multiprocessor configurations. One is a command line tool called
ccsboardinfo which prints a list of the available boards and processors.
So that you can use this function in a script, ccsboardinfo can return
a MATLAB software structure that you use when you want your script to
select a board without your help.

2-6

Getting Started with Automation Interface

Note The board and processor you select is used throughout the tutorial.

1 To see a list of the boards and processors installed on your PC, enter the
following command at the MATLAB software prompt:

ccsboardinfo

MATLAB software returns a list that shows you all the boards and
processors that CCS IDE recognizes as installed on your system.

2 To use the Selection Utility, boardprocsel, to select a board, enter

[boardnum,procnum] = boardprocsel

When you use boardprocsel, you see a dialog box similar to the following.
Note that some entries vary depending on your board set.

3 Select a board name and processor name from the lists.

You are selecting a board and processor number that identifies your
particular processor. When you create the object for CCS IDE in the
next section of this tutorial, the selected board and processor become the
processor of the object.

2-7

2 Automation Interface

4 Click Done to accept your board and processor selection and close the
dialog box.

boardnum and procnum now represent the Board name and Processor
name you selected — boardnum = 1 and procnum = 0

Creating and Querying Objects for CCS IDE
In this tutorial section, you create the connection between MATLAB software
and CCS IDE. This connection, or object, is a MATLAB software object that
you save as variable cc.

You use function ticcs to create objects. When you create objects, ticcs
input arguments let you define other object property values, such as the global
timeout. Refer to the ticcs reference documentation for more information
on these input arguments.

Use the generated object cc to direct actions to your processor. In the
following tasks, cc appears in all function syntax that interact with CCS
IDE and the processor:

1 Create an object that refers to your selected board and processor. Enter the
following command at the prompt.

cc=ticcs('boardnum',boardnum,'procnum',procnum)

If you were to watch closely, and your machine is not too fast, you see Code
Composer Studio software appear briefly when you call ticcs. If CCS
IDE was not running before you created the new object, CCS starts and
runs in the background.

2 Enter visible(cc,1) to force CCS IDE to be visible on your desktop.

Usually, you need to interact with Code Composer Studio software while
you develop your application. The first function in this tutorial, visible,
controls the state of CCS on your desktop. visible accepts Boolean inputs
that make CCS either visible on your desktop (input to visible = 1) or
invisible on your desktop (input to visible = 0). For this tutorial, use
visible to set the CCS IDE visibility to 1.

3 Next, enter display(cc) at the prompt to see the status information.

2-8

Getting Started with Automation Interface

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Embedded IDE Link provides three methods to read the status of a board
and processor:

• info— Return a structure of testable board conditions.

• display — Print information about the processor.

• isrunning— Return the state (running or halted) of the processor.

• isrtdxcapable— Return whether the hardware supports RTDX.

4 Type linkinfo = info(cc).

The cc link status information provides information about the hardware as
follows:

linkinfo =

boardname: 'C6711 Device Simulator'
procname: 'CPU_1'

isbigendian: 0
family: 320

subfamily: 103
revfamily: 11

processortype: 'simulator'
revsilicon: 0

timeout: 10

5 Check whether the processor is running by entering

runstatus = isrunning(cc)

2-9

2 Automation Interface

MATLAB software responds, indicating that the processor is stopped, as
follows:

runstatus =

0

6 At last, verify that the processor supports RTDX communications by
entering

usesrtdx = isrtdxcapable(cc)
usesrtdx =

1

Loading Files into CCS
You have established the connection to a processor and board. Using three
methods you learned about the hardware, whether it was running, its type,
and whether CCS IDE was visible. Next, the processor needs something to do.

In this part of the tutorial, you load the executable code for the processor CPU
in CCS IDE. Embedded IDE Link includes a CCS project file. Through the
next tasks in the tutorial, you locate the tutorial project file and load it into
CCS IDE. The openmethod directs CCS to load a project file or workspace file.

Note CCS has workspace and workspace files that are different from
the MATLAB workspace files and workspace. Remember to monitor both
workspaces.

After you have executable code running on your processor, you can exchange
data blocks with it. Exchanging data is the purpose of the objects provided by
Embedded IDE Link software.

1 To load the appropriate project file to your processor, enter the following
command at the MATLAB software prompt. getdemoproject is a
specialized function for loading Embedded IDE Link demo files. It is not
supported as a standard Embedded IDE Link function.

2-10

Getting Started with Automation Interface

demopjt= getDemoProject(cc,'ccstutorial')

demopjt.ProjectFile

ans =

C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c67x\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c67x

Your paths may be different if you use a different processor. Note where
the software stored the demo files on your machine. In general, Embedded
IDE Link software stores the demo project files in

LinkforCCS_vproduct_version

Embedded IDE Link creates this directory in a location where you have
write permission. There are two locations where Embedded IDE Link
software tries to create the demo directory, in the following order:

a In a temporary directory on your C drive, such as C:\temp\.

b If Embedded IDE Link software cannot use the temp directory, you see a
dialog box that asks you to select a location to store the demos.

2 Enter the following command at the MATLAB command prompt to build
the processor executable file in CCS IDE.

build(cc,'all',20)

You may get an error related to one or more missing .lib files. If you
installed CCS IDE in a directory other than the default installation
directory, browse in your installation directory to find the missing file or
files. Refer to the path in the error message as an indicator of where to
find the missing files.

3 Enter load(cc,'projectname.out') to load the processor execution file,
where projectname is the tutorial you chose, such as ccstut_67x.

2-11

2 Automation Interface

You have a loaded program file and associated symbol table to the IDE
and processor.

4 To determine the memory address of the global symbol ddat, enter the
following command at the prompt:

ddata = address(cc,'ddat')
ddata =

1.0e+009 *

2.1475 0

Your values for ddata may be different depending on your processor.

Note The symbol table is available after you load the program file into the
processor, not after you build a program file.

5 To convert ddata to a hexadecimal string that contains the memory address
and memory page, enter the following command at the prompt:

dec2hex(ddata)

MATLAB software displays the following response, where the memory page
is 0x00000000 and the address is 0x80000010.

ans =

80000010
00000000

Working with Projects and Data
After you load the processor code, you can use Embedded IDE Link functions
to examine and modify data values in the processor.

When you look at the source file listing in the CCS IDE Project view window,
there should be a file named ccstut.c. Embedded IDE Link ships this file
with the tutorial and includes it in the project.

2-12

Getting Started with Automation Interface

ccstut.c has two global data arrays — ddat and idat— that you declare and
initialize in the source code. You use the functions read and write to access
these processor memory arrays from MATLAB software.

Embedded IDE Link provides three functions to control processor execution
— run, halt, and restart.

1 To demonstrate these commands, use the following function to add a
breakpoint to line 64 of cctut.c.

insert(cc,'cctut.c',64)

Line 64 is

printf("Embedded IDE Link: Tutorial - Memory Modified by Matlab!\n");

For information about adding breakpoints to a file, refer to insert in the
online Help system. Then proceed with the tutorial.

2 To demonstrate the new functions, try the following functions.

halt(cc) % Halt the processor.

restart(cc) % Reset the PC to start of program.

run(cc,'runtohalt',30); % Wait for program execution to stop at

% breakpoint (timeout = 30 seconds).

When you switch to viewing CCS IDE, you see that your program stopped
at the breakpoint you inserted on line 64, and the program printed the
following messages in the CCS IDE Stdout tab. Nothing prints in the
MATLAB command window:

Embedded IDE Link: Tutorial - Initialized Memory
Double Data array = 16.3 -2.13 5.1 11.8
Integer Data array = -1-508-647-7000 (call me anytime!)

3 Before you restart your program (currently stopped at line 64), change
some values in memory. Perform one of the following procedures based on
your processor.

C5xxx processor family— Enter the following functions to demonstrate
the read and write functions.

2-13

2 Automation Interface

a Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(cc,address(cc,'idat'),'int16',4).

Now MATLAB software responds

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(cc,address(cc,'idat'),'int8',4)

idatv =

1 0 -4 1

c You can change the values stored in ddat by entering
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter

write(cc,address(cc,'idat'),int32([1:4]))

Here you write the data to the processor as 32-bit integers (convenient
for representing phone numbers, for example).

e Start the program running again by entering the following command:

run(cc,'runtohalt',30);

2-14

Getting Started with Automation Interface

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Next, read those new values back into MATLAB software.

f Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command at the prompt:

idatv = read(cc,address(cc,'idat'),'int16',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(cc);

C6xxx processor family— Enter the following commands to demonstrate
the read and write functions.

a Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(cc,address(cc,'idat'),'int16',4).

MATLAB software responds

idatv =

2-15

2 Automation Interface

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(cc,address(cc,'idat'),'int8',4)

idatv =

1 0 -4 1

c Change the values stored in ddat by entering
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter the following command:

write(cc,address(cc,'idat'),int32([1:4]))

In this command, you write the data to the processor as 32-bit integers
(convenient for representing phone numbers, for example).

e Next, start the program running again by entering the following
command:

run(cc,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Read those new values back into MATLAB software.

f Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

Verify that ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command:

idatv = read(cc,address(cc,'idat'),'int32',4)

2-16

Getting Started with Automation Interface

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(cc);

4 Embedded IDE Link offers more functions for reading and writing data to
your processor. These functions let you read and write data to the processor
registers: regread and regwrite. They let you change variable values
on the processor in real time. The functions behave slightly differently
depending on your processor. Select one of the following procedures to
demonstrate regread and regwrite for your processor.

C5xxx processor family — Most registers are memory-mapped and
available using read and write. However, the PC register is not memory
mapped. To access this register, use the special functions — regread
and regwrite. The following commands demonstrate how to use these
functions to read and write to the PC register.

a To read the value stored in register PC, enter the following command
at the prompt to indicate to MATLAB software the data type to read.
The input string binary indicates that the PC register contains a value
stored as an unsigned binary integer.

cc.regread('PC','binary')

MATLAB software displays

ans =

33824

b To write a new value to the PC register, enter the following command.
This time, the binary input argument tells MATLAB software to write
the value to the processor as an unsigned binary integer. Notice that you
used hex2dec to convert the hexadecimal string to decimal.

cc.regwrite('PC',hex2dec('100'),'binary')

2-17

2 Automation Interface

c Verify that the PC register contains the value you wrote.

cc.regread('PC','binary')

C6xxx processor family — regread and regwrite let you access the
processor registers directly. Enter the following commands to get data into
and out of the A0 and B2 registers on your processor.

a To retrieve the value in register A0 and store it in a variable in your
MATLAB workspace. Enter the following command:

treg = cc.regread('A0','2scomp');

treg contains the two’s complement representation of the value in A0.

b To retrieve the value in register B2 as an unsigned binary integer, enter
the following command:

cc.regread('B2','binary');

c Next, enter the following command to use regwrite to put the value in
treg into register A2.

cc.regwrite('A2',treg,'2scomp');

CCS IDE reports that A0, B2, and A2 have the values you expect. Select
View > CPU Registers > Core Registers from the CCS IDE menu
bar to list the processor registers.

Closing the Links or Cleaning Up CCS IDE
Objects that you create in Embedded IDE Link software have COM handles
to CCS. Until you delete these handles, the CCS process (cc_app.exe in the
Microsoft Windows Task Manager) remains in memory. Closing MATLAB
software removes these COM handles, but there may be times when you want
to delete the handles without closing the application.

Use clear to remove objects from your MATLAB workspace and to delete
handles they contain. clear all deletes everything in your workspace. To
retain your MATLAB software data while deleting objects and handles, use
clear objname. This applies both to ticcs objects your create with ticcs
and other object you create with createobj. To remove the objects created

2-18

Getting Started with Automation Interface

during the tutorial, the tutorial program executes the following command at
the prompt:

clear cvar cfield uintcvar

This tutorial also closes the project in CCS with the following command:

close(cc,projfile,'project')

To delete your link to CCS, enter clear cc at the prompt.

Your development tutorial using Code Composer Studio IDE is done.

During the tutorial you

1 Selected your processor.

2 Created and queried links to CCS IDE to get information about the link
and the processor.

3 Used MATLAB software to load files into CCS IDE, and used MATLAB
software to run that file.

4 Worked with your CCS IDE project from MATLAB software by reading
and writing data to your processor, and changing the data from MATLAB
software.

5 Created and used the embedded objects to manipulate data in a C-like way.

6 Closed the links you opened to CCS IDE.

2-19

2 Automation Interface

Getting Started with RTDX

In this section...

“Introducing the Tutorial for Using RTDX” on page 2-21

“Creating the ticcs Objects” on page 2-26

“Configuring Communications Channels” on page 2-29

“Running the Application” on page 2-31

“Closing the Connections and Channels or Cleaning Up” on page 2-38

“Listing Functions” on page 2-41

Support for using RTDX with C5000 and C6000 processors will be removed in
a future release.

Embedded IDE Link and the objects for CCS IDE and RTDX speed and
enhance your ability to develop and deploy digital signal processing systems
on Texas Instruments processors. By using MATLAB software and Embedded
IDE Link, your MathWorks™ tools, CCS IDE and RTDX work together to help
you test and analyze your processing algorithms in your MATLAB workspace.

In contrast to CCS IDE, using links for RTDX lets you interact with your
process in real time while it’s running on the processor. Across the connection
between MATLAB software and CCS, you can:

• Send and retrieve data from memory on the processor

• Change the operating characteristics of the program

• Make changes to algorithms as needed without stopping the program or
setting breakpoints in the code

Enabling real-time interaction lets you more easily see your process or
algorithm in action, the results as they develop, and the way the process runs.

This tutorial assumes you have Texas Instruments’ Code Composer Studio™
software and at least one DSP development board. You can use the
hardware simulator in CCS IDE to run this tutorial. The tutorial uses the
TMS320C6711 DSK as the board, with the C6711 DSP as the processor.

2-20

Getting Started with RTDX™

After you complete the tutorial, either in the demonstration form or by
entering the functions along with this text, you are ready to begin using
RTDX with your applications and hardware.

Introducing the Tutorial for Using RTDX
Digital signal processing development efforts begin with an idea for processing
data; an application area, such as audio or wireless communications or
multimedia computing; and a platform or hardware to host the signal
processing. Usually these processing efforts involve applying strategies like
signal filtering, compression, and transformation to change data content; or
isolate features in data; or transfer data from one form to another or one
place to another.

Developers create algorithms they need to accomplish the desired result. After
they have the algorithms, they use models and DSP processor development
tools to test their algorithms, to determine whether the processing achieves
the goal, and whether the processing works on the proposed platform.

Embedded IDE Link and the links for RTDX and CCS IDE ease the job of
taking algorithms from the model realm to the real world of the processor
on which the algorithm runs.

RTDX and links for CCS IDE provide a communications pathway to
manipulate data and processing programs on your processor. RTDX offers
real-time data exchange in two directions between MATLAB software and
your processor process. Data you send to the processor has little effect on the
running process and plotting the data you retrieve from the processor lets you
see how your algorithms are performing in real time.

To introduce the techniques and tools available in Embedded IDE Link for
using RTDX, the following procedures use many of the methods in the link
software to configure the processor, open and enable channels, send data to
the processor, and clean up after you finish your testing. Among the functions
covered are:

2-21

2 Automation Interface

Functions From Objects for CCS IDE

Function Description

ticcs Create connections to CCS IDE and
RTDX.

cd Change your CCS IDE working
directory from MATLAB software.

open Load program files in CCS IDE.

run Run processes on the processor.

Functions From the RTDX Class

Function Description

close Close the RTDX links between
MATLAB software and your
processor.

configure Determine how many channel
buffers to use and set the size of each
buffer.

disable Disable the RTDX links before you
close them.

display Return the properties of an object
in formatted layout. When you omit
the closing semicolon on a function,
disp (a built-in function) provides
the default display for the results of
the operation.

enable Enable open channels so you can use
them to send and retrieve data from
your processor.

isenabled Determine whether channels are
enabled for RTDX communications.

2-22

Getting Started with RTDX™

Function Description

isreadable Determine whether MATLAB
software can read the specified
memory location.

iswritable Determine whether MATLAB
software can write to the processor.

msgcount Determine how many messages are
waiting in a channel queue.

open Open channels in RTDX.

readmat Read data matrices from the
processor into MATLAB software as
an array.

readmsg Read one or more messages from a
channel.

writemsg Write messages to the processor over
a channel.

This tutorial provides the following workflow to show you how to use many
of the functions in the links. By performing the steps provided, you work
through many of the operations yourself. The tutorial follows the general
task flow for developing digital signal processing programs through testing
with the links for RTDX.

Within this set of tasks, numbers 1, 2, and 4 are fundamental to all
development projects. Whenever you work with MATLAB software and
objects for RTDX, you perform the functions and tasks outlined and presented
in this tutorial. The differences lie in Task 3. Task 3 is the most important for
using Embedded IDE Link to develop your processing system.

1 Create an RTDX link to your desired processor and load the program to
the processor.

All projects begin this way. Without the links you cannot load your
executable to the processor.

2 Configure channels to communicate with the processor.

2-23

2 Automation Interface

Creating the links in Task 1 did not open communications to the processor.
With the links in place, you open as many channels as you need to support
the data transfer for your development work. This task includes configuring
channel buffers to hold data when the data rate from the processor exceeds
the rate at which MATLAB software can capture the data.

3 Run your application on the processor. You use MATLAB software to
investigate the results of your running process.

4 Close the links to the processor and clean up the links and associated
debris left over from your work.

Closing channels and cleaning up the memory and links you created
ensures that CCS IDE, RTDX, and Embedded IDE Link are ready for the
next time you start development on a project.

This tutorial uses an executable program named rtdxtutorial_6xevm.out
as your application. When you use the RTDX and CCS IDE links to develop
your own applications, replace rtdxtutorial_6xevm.out in Task 3 with the
filename and path to your digital signal processing application.

You can view the tutorial M-file used here by clicking rtdxtutorial. To run
this tutorial in MATLAB software, click run rtdxtutorial.

2-24

Getting Started with RTDX™

Note To be able to open and enable channels over a link to RTDX, the
program loaded on your processor must include functions or code that define
the channels.

Your C source code might look something like this to create two channels,
one to write and one to read.

rtdx_CreateInputChannel(ichan); % processor reads from this.
rtdx_CreateOutputChannel(ochan); % processor writes to this.

These are the entries we use in int16.c (the source code that generates
rtdxtutorial_6xevm.out) to create the read and write channels.

If you are working with a model in Simulink software and using code
generation, use the To Rtdx and From Rtdx blocks in your model to add the
RTDX communications channels to your model and to the executable code
on your processor.

One more note about this tutorial. Throughout the code we use both the dot
notation (direct property referencing) to access functions and link properties
and the function form.

For example, use the following command to open and configure ichan for
write mode.

cc.rtdx.open('ichan','w');

You could use an equivalent syntax, the function form, that does not use
direct property referencing.

open(cc.rtdx,'ichan','w');

Or, use

open(rx,'ichan','w');

if you created an alias rx to the RTDX portion of cc, as shown by the following
command:

2-25

2 Automation Interface

rx = cc.rtdx;

Creating the ticcs Objects
With your processing model converted to an executable suitable for your
desired processor, you are ready to use the objects to test and run your model
on your processor. Embedded IDE Link and the objects do not distinguish
the source of the executable — whether you used Embedded IDE Link and
Real-Time Workshop, CCS IDE, or some other development tool to program
and compile your model to an executable does not affect the object connections.
So long as your ..out file is acceptable to the processor you select, Embedded
IDE Link provides the connection to the processor.

Note Program rtdxtutorial_6xevm.out uses the C6711. The executable is
compiled, built, and linked to run on the C6711 processor. To use the tutorial
without changes, specify your C6711 when you define the object properties
boardnum and procnum.

Before continuing with this tutorial, you must load a valid GEL file to
configure the EMIF registers of your processor and perform any required
processor initialization steps. Default GEL files provided by CCS are stored
in ..\cc\gel in the folder where you installed CCS software. Select File
> Load_GEL in CCS IDE to load the default GEL file that matches your
processor family, such as init6x0x.gel for the C6x0x processor family, and
your configuration.

Begin the process of getting your model onto the processor by creating a an
object that refers to CCS IDE. Start by clearing all existing handles and
setting echo on so you see functions in the M-file execute as the program runs:

1 clear all; echo on;

clear all has the side effect of removing debugging breakpoints
and resetting persistent variables because function breakpoints and
persistent variables are cleared whenever the M-file changes or is cleared.
Breakpoints within your executable remain after clear. Clearing the
MATLAB workspace does not affect your executable.

2 Now construct the link to your board and processor by entering

2-26

Getting Started with RTDX™

cc=ticcs('boardnum',0);

boardnum defines which board the new link accesses. In this example,
boardnum is 0. Embedded IDE Link connects the link to the first, and in
this case only, processor on the board. To find the boardnum and procnum
values for the boards and simulators on your system, use ccsboardinfo.
When you enter the following command at the prompt

ccsboardinfo

Embedded IDE Link returns a list like the following one that identifies the
boards and processors in your computer.

Board Board Proc Processor Processor

Num Name Num Name Type

1 C6xxx Simulator (Texas
Inst...

0 CPU TMS320C6211

0 C6701 EVM (Texas
Instruments)

0 CPU_1 TMS320C6701

3 To open and load the processor file, change the path for MATLAB software
to be able to find the file.

projname =

C:\Temp\LinkForCCSDemos_3.2\rtdxtutorial\c6x\c64xp\rtdxtut_sim.pjt

outFile =

C:\Temp\LinkForCCSDemos_v3.2\rtdxtutorial\c6x\c64xp\rtdxtut_sim.out

processor_dir = demoPjt.DemoDir

processor_dir =

C:\Temp\LinkForCCSDemos_v3.2\rtdxtutorial\c6x\c64xp

2-27

2 Automation Interface

% Go to processor directory

cd(cc,processor_dir);cd(cc,tgt_dir); % Or cc.cd(tgt_dir)

dir(cc); % Or cc.dir

To load the appropriate project file to your processor, enter the following
commands at the MATLAB software prompt. getDemoProject is a
specialized function for loading Embedded IDE Link demo files. It is not
supported as a standard Embedded IDE Link function.

demoPjt = getDemoProject(cc,'ccstutorial');

demoPjt.ProjectFile

ans =

C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c64xp\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c64xp

Notice where the demo files are stored on your machine. In general,
Embedded IDE Link software stores the demo project files in

LinkforCCS_vproduct_version

For example, if you are using version 3.2 of Embedded IDE Link software,
the project demos are stored in LinkforCCS_v3.2\. Embedded IDE Link
software creates this folder in a location on your machine where you have
write permission. Usually, there are two locations where Embedded IDE
Link software tries to create the demo folder, in the order shown.

a In a temporary folder on the C drive, such as C:\temp\.

b If Embedded IDE Link software cannot use the temp folder, you see a
dialog box that asks you to select a location to store the demos.

2-28

Getting Started with RTDX™

4 You have reset the folder path to find the tutorial file. Now open the .out
file that matches your processor type, such as rtdxtutorial_c67x.out or
rtdxtutorial_c64x.out.

cc.open('rtdxtutorial_67x.out')

Because open is overloaded for the CCS IDE and RTDX links, this may
seem a bit strange. In this syntax, open loads your executable file onto
the processor identified by cc. Later in this tutorial, you use open with a
different syntax to open channels in RTDX.

In the next section, you use the new link to open and enable communications
between MATLAB software and your processor.

Configuring Communications Channels
Communications channels to the processor do not exist until you open and
enable them through Embedded IDE Link and CCS IDE. Opening channels
consists of opening and configuring each channel for reading or writing, and
enabling the channels.

In the open function, you provide the channel names as strings for the channel
name property. The channel name you use is not random. The channel name
string must match a channel defined in the executable file. If you specify
a string that does not identify an existing channel in the executable, the
open operation fails.

In this tutorial, two channels exist on the processor — ichan and ochan.
Although the channels are named ichan for input channel and ochan for
output channel, neither channel is configured for input or output until you
configure them from MATLAB software or CCS IDE. You could configure
ichan as the output channel and ochan as the input channel. The links would
work just the same. For simplicity, the tutorial configures ichan for input
and ochan for output. One more note—reading and writing are defined as
seen by the processor. When you write data from MATLAB software, you
write to the channel that the processor reads, ichan in this case. Conversely,
when you read from the processor, you read from ochan, the channel that
the processor writes to:

2-29

2 Automation Interface

1 Configure buffers in RTDX to store the data until MATLAB software can
read it into your workspace. Often, MATLAB software cannot read data as
quickly as the processor can write it to the channel.

cc.rtdx.configure(1024,4); % define 4 channels of 1024 bytes each

Channel buffers are optional. Adding them provides a measure of insurance
that data gets from your processor to MATLAB software without getting
lost.

2 Define one of the channels as a write channel. Use ’ichan’ for the channel
name and ’w’ for the mode. Either ’w’ or ’r’ fits here, for write or read.

cc.rtdx.open('ichan','w');

3 Now enable the channel you opened.

cc.rtdx.enable('ichan');

4 Repeat steps 2 and 3 to prepare a read channel.

cc.rtdx.open('ochan','r');
cc.rtdx.enable('ochan');

5 To use the new channels, enable RTDX by entering

cc.rtdx.enable;

You could do this step before you configure the channels — the order does
not matter.

6 Reset the global time-out to 20s to provide a little room for error. ticcs
applies a default timeout value of 10s. In some cases this may not be
enough.

cc.rtdx.get('timeout')
ans =

10
cc.rtdx.set('timeout', 20); % Reset timeout = 20 seconds

2-30

Getting Started with RTDX™

7 Check that the timeout property value is now 20s and that your object has
the correct configuration for the rest of the tutorial.

cc.rtdx

RTDX Object:
API version: 1.0
Default timeout: 20.00 secs
Open channels: 2

Running the Application
To this point you have been doing housekeeping functions that are common to
any application you run on the processor. You load the processor, configure
the communications, and set up other properties you need.

In this tutorial task, you use a specific application to demonstrate a few of
the functions available in Embedded IDE Link that let you experiment with
your application while you develop your prototype. To demonstrate the link
for RTDX readmat, readmsg, and writemsg functions, you write data to your
processor for processing, then read data from the processor after processing:

1 Restart the program you loaded on the processor. restart ensures the
program counter (PC) is at the beginning of the executable code on the
processor.

cc.restart

Restarting the processor does not start the program executing. You use run
to start program execution.

2 Type cc.run('run');

Using ’run’ for the run mode tells the processor to continue to execute the
loaded program continuously until it receives a halt directive. In this mode,
control returns to MATLAB software so you can work in MATLAB software
while the program runs. Other options for the mode are

• ’runtohalt’ — start to execute the program and wait to return control to
MATLAB software until the process reaches a breakpoint or execution
terminates.

2-31

2 Automation Interface

• ’tohalt’ — change the state of a running processor to ’runtohalt’ and
wait to return until the program halts. Use tohalt mode to stop the
running processor cleanly.

3 Type the following functions to enable the write channel and verify that the
enable takes effect.

cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')

If MATLAB software responds ans = 0 your channel is not enabled and
you cannot proceed with the tutorial. Try to enable the channel again and
verify the status.

4 Write some data to the processor. Check that you can write to the
processor, then use writemsg to send the data. You do not need to enter
the if-test code shown.

if cc.rtdx.iswritable('ichan'), % Used in a script application.

disp('writing to processor...') % Optional to display progress.

indata=1:10

cc.rtdx.writemsg('ichan', int16(indata))

end % Used in scripts for channel testing.

The if statement simulates writing the data from within a MATLAB
software script. The script uses iswritable to check that the input channel
is functioning. If iswritable returns 0 the script would skip the write
and exit the program, or respond in some way. When you are writing or
reading data to your processor in a script or M-file, checking the status of
the channels can help you avoid errors during execution.

As your application runs you may find it helpful to display progress
messages. In this case, the program directed MATLAB software to print a
message as it reads the data from the processor by adding the function

disp('writing to processor...')

Function cc.rtdx.writemsg('ichan', int16(indata)) results in 20
messages stored on the processor. Here’s how.

2-32

Getting Started with RTDX™

When you write indata to the processor, the following code running on the
processor takes your input data from ichan, adds one to the values and
copies the data to memory:

while (!RTDX_isInputEnabled(&ichan))

{/* wait for channel enable from MATLAB */}
RTDX_read(&ichan, recvd, sizeof(recvd));
puts("\n\n Read Completed ");

for (j=1; j<=20; j++) {
for (i=0; i<MAX; i++) {

recvd[i] +=1;
}
while (!RTDX_isOutputEnabled(&ochan))

{ /* wait for channel enable from MATLAB */ }
RTDX_write(&ochan, recvd, sizeof(recvd));
while (RTDX_writing != NULL)
{ /* wait for data xfer INTERRUPT DRIVEN for C6000 */ }

}

Program int16_rtdx.c contains this source code. You can find the file in a
folder in the ..\tidemos\rtdxtutorial folder.

5 Type the following to check the number of available messages to read from
the processor.

num_of_msgs = cc.rtdx.msgcount('ochan');

num_of_msgs should be zero. Using this process to check the amount of
data can make your reads more reliable by letting you or your program
know how much data to expect.

6 Type the following to verify that your read channel ochan is enabled for
communications.

cc.rtdx.isenabled('ochan')

You should get back ans = 0— you have not enabled the channel yet.

7 Now enable and verify ’ochan’.

2-33

2 Automation Interface

cc.rtdx.enable('ochan');
cc.rtdx.isenabled('ochan')

To show that ochan is ready, MATLAB software responds ans = 1. If not,
try enabling ochan again.

8 Type

pause(5);

The pause function gives the processor extra time to process the data in
indata and transfer the data to the buffer you configured for ochan.

9 Repeat the check for the number of messages in the queue. There should be
20 messages available in the buffer.

num_of_msgs = cc.rtdx.msgcount('ochan')

With num_of_msgs = 20, you could use a looping structure to read the
messages from the queue in to MATLAB software. In the next few steps of
this tutorial you read data from the ochan queue to different data formats
within MATLAB software.

10 Read one message from the queue into variable outdata.

outdata = cc.rtdx.readmsg('ochan','int16')

outdata =

2 3 4 5 6 7 8 9 10 11

Notice the ’int16’ represent option. When you read data from your
processor you need to tell MATLAB software the data type you are reading.
You wrote the data in step 4 as 16-bit integers so you use the same data
type here.

While performing reads and writes, your process continues to run. You
did not need to stop the processor to get the data or send the data, unlike
using most debuggers and breakpoints in your code. You placed your data
in memory across an RTDX channel, the processor used the data, and you
read the data from memory across an RTDX channel, without stopping
the processor.

2-34

Getting Started with RTDX™

11 You can read data into cell arrays, rather than into simple double-precision
variables. Use the following function to read three messages to cell array
outdata, an array of three, 1-by-10 vectors. Each message is a 1-by-10
vector stored on the processor.

outdata = cc.rtdx.readmsg('ochan','int16',3)

outdata =
[1x10 int16] [1x10 int16] [1x10 int16]

12 Cell array outdata contains three messages. Look at the second message,
or matrix, in outdata by using dereferencing with the array.

outdata{1,2}

outdata =

4 5 6 7 8 9 10 11 12 13

13 Read two messages from the processor into two 2-by-5 matrices in your
MATLAB workspace.

outdata = cc.rtdx.readmsg('ochan','int16',[2 5],2)

outdata =

[2x5 int16] [2x5 int16]

To specify the number of messages to read and the data format in your
workspace, you used the siz and nummsgs options set to [2 5] and 2.

14 You can look at both matrices in outdata by dereferencing the cell array
again.

outdata{1,:}

ans =

6 8 10 12 14

7 9 11 13 15

ans =

7 9 11 13 15

8 10 12 14 16

2-35

2 Automation Interface

15 For a change, read a message from the queue into a column vector.

outdata = cc.rtdx.readmsg('ochan','int16',[10 1])

outdata =

8

9

10

11

12

13

14

15

16

17

16 Embedded IDE Link provides a function for reading messages into
matrices–readmat. Use readmat to read a message into a 5-by-2 matrix in
MATLAB software.

outdata = readmat(cc.rtdx,'ochan','int16',[5 2])

outdata =

9 14

10 15

11 16

12 17

13 18

Because a 5-by-2 matrix requires ten elements, MATLAB software reads
one message into outdata to fill the matrix.

17 To check your progress, see how many messages remain in the queue. You
have read eight messages from the queue so 12 should remain.

num_of_msgs = cc.rtdx.msgcount('ochan')

num_of_msgs =
12

2-36

Getting Started with RTDX™

18 To demonstrate the connection between messages and a matrix in MATLAB
software, read data from 'ochan' to fill a 4-by-5 matrix in your workspace.

outdata = cc.rtdx.readmat('ochan','int16',[4 5])

outdata =

10 14 18 13 17

11 15 19 14 18

12 16 11 15 19

13 17 12 16 20

Filling the matrix required two messages worth of data.

19 To verify that the last step used two messages, recheck the message count.
You should find 10 messages waiting in the queue.

num_of_msgs = cc.rtdx.msgcount('ochan')

20 Continuing with matrix reads, fill a 10-by-5 matrix (50 matrix elements or
five messages).

outdata = cc.rtdx.readmat('ochan','int16',[10 5])

outdata =

12 13 14 15 16

13 14 15 16 17

14 15 16 17 18

15 16 14 18 19

16 17 18 19 20

17 18 19 20 21

18 19 20 21 22

19 20 21 22 23

20 21 22 23 24

21 22 23 24 25

21 Recheck the number of messages in the queue to see that five remain.

22 flush lets you remove messages from the queue without reading them.
Data in the message you remove is lost. Use flush to remove the next
message in the read queue. Then check the waiting message count.

2-37

2 Automation Interface

cc.rtdx.flush('ochan',1)
num_of_msgs = cc.rtdx.msgcount('ochan')

num_of_msgs =

4

23 Empty the remaining messages from the queue and verify that the queue is
empty.

cc.rtdx.flush('ochan','all')

With the all option, flush discards all messages in the ochan queue.

Closing the Connections and Channels or Cleaning Up
One of the most important programmatic processes you should do in every
RTDX session is to clean up at the end. Cleaning up includes stopping
your processor, disabling the RTDX channels you enabled, disabling RTDX
and closing your open channels. Performing this series of tasks ensures
that future processes avoid trouble caused by unexpected interactions with
remaining handles, channels, and links from earlier development work.

Best practices suggest that you include the following tasks (or an appropriate
subset that meets your development needs) in your development scripts and
programs.

We use several functions in this section; each has a purpose — the operational
details in the following list explain how and why we use each one. They are

• close — close the specified RTDX channel. To use the channel again,
you must open and enable the channel. Compare close to disable.
close('rtdx') closes the communications provided by RTDX. After you
close RTDX, you cannot communicate with your processor.

• disable— remove RTDX communications from the specified channel, but
does not remove the channel, or link. Disabling channels may be useful
when you do not want to see the data that is being fed to the channel, but
you may want to read the channel later. By enabling the channel later, you
have access to the data entering the channel buffer. Note that data that
entered the channel while it was disabled is lost.

2-38

Getting Started with RTDX™

• halt— stop a running processor. You may still have one or more messages
in the host buffer.

Use the following procedure to shut down communications between MATLAB
software and the processor, and end your session:

1 Begin the process of shutting down the processor and RTDX by stopping
the processor. Type the following functions at the prompt.

if (isrunning(cc)) % Use this test in scripts.
cc.halt; % Halt the processor.

end % Done.

Your processor may already be stopped at this point. In a script, you might
put the function in an if-statement as we have done here. Consider this
test to be a safety check. No harm comes to the processor if it is already
stopped when you tell it to stop. When you direct a stopped processor to
halt, the function returns immediately.

2 You have stopped the processor. Now disable the RTDX channels you
opened to communicate with the processor.

cc.rtdx.disable('all');

If necessary, using disable with channel name and processor identifier
input arguments lets you disable only the channel you choose. When you
have more than one board or processor, you may find disabling selected
channels meets your needs.

When you finish your RTDX communications session, disable RTDX to
ensure that Embedded IDE Link releases your open channels before you
close them.

cc.rtdx.disable;

3 Use one or all of the following function syntaxes to close your open
channels. Either close selected channels by using the channel name in the
function, or use the all option to close all open channels.

• cc.rtdx.close('ichan') to close your input channel in this tutorial.

• cc.rtdx.close('ochan') to close your output channel in the tutorial.

2-39

2 Automation Interface

• cc.rtdx.close('all') to close all of your open RTDX channels,
regardless of whether they are part of this tutorial.

Consider using the all option with the close function when you finish
your RTDX work. Closing channels reduces unforeseen problems caused
by channel objects that exist but do not get closed correctly when you end
your session.

4 When you created your RTDX object (cc = ticcs('boardnum',1) at the
beginning of this tutorial, the ticcs function opened CCS IDE and set the
visibility to 0. To avoid problems that occur when you close the interface to
RTDX with CCS visibility set to 0, make CCS IDE visible on your desktop.
The following if statement checks the CCS IDE visibility and changes
it if needed.

if cc.isvisible,

cc.visible(1);

end

Visibility can cause problems. When CCS IDE is running invisibly on your
desktop, do not use clear all to remove your links for CCS IDE and
RTDX. Without a ticcs object that references the CCS IDE you cannot
access CCS IDE to change the visibility setting, or close the application. To
close CCS IDE when you do not have an existing object, either create a new
object to access the CCS IDE, or use Microsoft Windows Task Manager to
end the process cc_app.exe, or close the MATLAB software.

5 You have finished the work in this tutorial. Enter the following commands
to close your remaining references to CCS IDE and release the associated
resources.

clear ('all'); % Calls the link destructors to remove all links.

echo off

clear all without the parentheses removes all variables from your
MATLAB workspace.

You have completed the tutorial using RTDX. During the tutorial you

1 Opened connections to CCS IDE and RTDX and used those connections to
load an executable program to your processor.

2-40

Getting Started with RTDX™

2 Configured a pair of channels so you could transfer data to and from your
processor.

3 Ran the executable on the processor, sending data to the processor for
processing and retrieving the results.

4 Stopped the executing program and closed the links to CCS IDE and RTDX.

This tutorial provides a working process for using Embedded IDE Link and
your signal processing programs to develop programs for a range of Texas
Instruments processors. While the processor may change, the essentials of
the process remain the same.

Listing Functions
To review a complete list of functions and methods that operate with ticcs
objects, either CCS IDE or RTDX, enter either of the following commands at
the prompt.

help ticcs
help rtdx

If you already have a ticcs object cc, you can use dot notation to return the
methods for CCS IDE or RTDX by entering one of the following commands at
the prompt:

• cc.methods

• cc.rtdx.methods

In either instance MATLAB software returns a list of the available functions
for the specified link type, including both public and private functions. For
example, to see the functions (methods) for links to CCS IDE, enter:

help ticcs

2-41

2 Automation Interface

Constructing ticcs Objects
When you create a connection to CCS IDE using the ticcs command, you are
creating a “ticcs object for accessing the CCS IDE and RTDX interface”. The
ticcs object implementation relies on MATLAB software object-oriented
programming capabilities.

The discussions in this section apply to the ticcs objects in Embedded IDE
Link.

Like other MATLAB software structures, objects in Embedded IDE Link have
predefined fields called object properties.

You specify object property values by one of the following methods:

• Setting the property values when you create the ticcs object

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting ticcs object properties, refer to ticcs.

Example — Constructor for ticcs Objects
The easiest way to create an object is to use the function ticcs to create
an object with the default properties. Create an object named cc to refer to
CCS IDE by entering

cc = ticcs

MATLAB software responds with a list of the properties of the object cc you
created along with the associated default property values.

ticcs object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

2-42

Constructing ticcs Objects

RTDX channels : 0

Inspecting the output reveals two objects listed—a CCS IDE object and an
RTDX object. CCS IDE and RTDX objects cannot be created separately. By
design they maintain a member class relationship; the RTDX object is a class,
a member of the CCS object class. In this example, cc is an instance of the
class CCS. If you enter

rx = cc.rtdx

rx is a handle to the RTDX portion of the CCS object. As an alias, rx replaces
cc.rtdx in functions such as readmat or writemsg that use the RTDX
communications features of the CCS link. Typing rx at the command line
now produces

rx

RTDX channels : 0

The object properties are described in Chapter 6, “Function Reference”, and
in more detail in ticcs Object Properties. These properties are set to default
values when you construct objects.

2-43

2 Automation Interface

ticcs Properties and Property Values
Objects in Embedded IDE Link software have properties associated with
them. Each property is assigned a value. You can set the values of most
properties, either when you create the link or by changing the property
value later. However, some properties have read-only values. And a few
property values, such as the board number and the processor to which the link
attaches, become read-only after you create the object. You cannot change
those after you create your link.

For more information about using objects and properties, refer to “Using
Objects” in MATLAB Programming Fundamentals.

2-44

Overloaded Functions for ticcs Objects

Overloaded Functions for ticcs Objects
Several functions in this Embedded IDE Link have the same name as
functions in other MathWorks toolboxes or in MATLAB software. These
behave similarly to their original counterparts, but you apply these functions
directly to an object. This concept of having functions with the same name
operate on different types of objects (or on data) is called overloading of
functions.

For example, the set command is overloaded for ticcs objects. After you
specify your link by assigning values to its properties, you can apply the
functions in this toolbox (such as readmat for using RTDX to read an array
of data from the processor) directly to the variable name you assign to your
object, without specifying your object parameters again.

For a complete list of the functions that act on ticcs objects, refer to the
tables of functions in the function reference pages.

2-45

2 Automation Interface

ticcs Object Properties

In this section...

“Quick Reference to ticcs Object Properties” on page 2-46

“Details About ticcs Object Properties” on page 2-48

Embedded IDE Link provides an interface to your processor hardware so
you can communicate with processors for which you are developing systems
and algorithms. Each ticcs object comprises two objects—a CCS IDE object
and an RTDX interface object. The objects are not separable; the RTDX
object is a subclass of the CCS IDE object. Each of the objects has multiple
properties. To configure the interface objects for CCS IDE and RTDX, you set
parameters that define details such as the desired board, the processor, the
timeout period applied for communications operations, and a number of other
values. Because Embedded IDE Link uses objects to create the interface, the
parameters you set are called properties and you treat them as properties
when you set them, retrieve them, or modify them.

This section details the properties for the ticcs objects for CCS IDE and
RTDX. First the section provides tables of the properties, for quick reference.
Following the tables, the section offers in-depth descriptions of each property,
its name and use, and whether you can set and get the property value
associated with the property. Descriptions include a few examples of the
property in use.

MATLAB software users may find much of this handling of objects familiar.
Objects in Embedded IDE Link, behave like objects in MATLAB software
and the other object-oriented toolboxes. For C++ programmers, discussion of
object-oriented programming is likely to be a review.

Quick Reference to ticcs Object Properties
The following table lists the properties for the ticcs objects in Embedded
IDE Link. The second column tells you which object the property belongs to.
Knowing which property belongs to each object in a ticcs object tells you
how to access the property.

2-46

ticcs Object Properties

Property
Name

Applies
to Which
Connection?

User
Settable? Description

apiversion CCS IDE No Reports the version
number of your CCS
API.

boardnum CCS IDE Yes/initially Specifies the index number
of a board that CCS IDE
recognizes.

ccsappexe CCS IDE No Specifies the path to the
CCS IDE executable.
Read-only property.

numchannels RTDX No Contains the number of
open RTDX channels for a
specific link.

page CCS IDE Yes/default Stores the default memory
page for reads and writes.

procnum CCS IDE Yes/at start
only

Stores the number CCS
Setup Utility assigns to the
processor.

rtdx RTDX No Specifies RTDX in a
syntax.

rtdxchannel RTDX No A string. Identifies the
RTDX channel for a link.

timeout CCS IDE Yes/default Contains the global
timeout setting for the
link.

version RTDX No Reports the version of your
RTDX software.

Some properties are read only — you cannot set the property value. Other
properties you can change at all times. If the entry in the User Settable
column is “Yes/initially”, you can set the property value only when you create
the link. Thereafter it is read only.

2-47

2 Automation Interface

Details About ticcs Object Properties
To use the links for CCS IDE and RTDX interface you set values for:

• boardnum— specify the board with which the link communicates.

• procnum — specify the processor on the board. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— specify the global timeout value. (Optional. Default is 10s.)

Details of the properties associated with connections to CCS IDE and RTDX
interface appear in the following sections, listed in alphabetical order by
property name.

Many of these properties are object linking and embedding (OLE) handles.
The MATLAB software COM server creates the handles when you create
objects for CCS IDE and RTDX. You can manipulate the OLE handles using
get, set, and invoke to work directly with the COM interface with which
the handles interact.

apiversion
Property appversion contains a string that reports the version of the
application program interface (API) for CCS IDE that you are using when you
create a link. You cannot change this string. When you upgrade the API, or
CCS IDE, the string changes to match. Use display to see the apiversion
property value for a link. This example shows the appversion value for
link cc.

display(cc)

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

2-48

ticcs Object Properties

Note that the API version is not the same as the CCS IDE version.

boardnum
Property boardnum identifies the board referenced by a link for CCS IDE.
When you create a link, you use boardnum to specify the board you are using.
To get the value for boardnum, use ccsboardinfo or the CCS Setup utility
from Texas Instruments software. The CCS Setup utility assigns the number
for each board installed on your system.

ccsappexe
Property ccsappexe contains the path to the CCS IDE executable file
cc_app.exe. When you use ticcs to create a link, MATLAB software
determines the path to the CCS IDE executable and stores the path in this
property. This is a read-only property. You cannot set it.

numchannels
Property numchannels reports the number of open RTDX communications
channels for an RTDX link. Each time you open a channel for a link,
numchannels increments by one. For new links numchannels is zero until you
open a channel for the link.

To see the value for numchannels create a link to CCS IDE. Then open a
channel to RTDX. Use display to see the RTDX link properties.

cc=ticcs

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

2-49

2 Automation Interface

rx=cc.rtdx

RTDX channels : 0

open(rx,'ichan','r','ochan','w');

get(cc.rtdx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {'' '' ''}
procType: 103
timeout: 10

page
Property page contains the default value CCS IDE uses when the user does
not specify the page input argument in the syntax for a function that access
memory.

procnum
Property procnum identifies the processor referenced by a link for CCS IDE.
When you create an object, you use procnum to specify the processor you are
using . The CCS Setup Utility assigns a number to each processor installed
on each board. To determine the value of procnum for a processor, use
ccsboardinfo or the CCS Setup utility from Texas Instruments software.

To identify a processor, you need both the boardnum and procnum values.
For boards with one processor, procnum equals zero. CCS IDE numbers the
processors on multiprocessor boards sequentially from 0 to the number of
processors. For example, on a board with four processors, the processors
are numbered 0, 1, 2, and 3.

2-50

ticcs Object Properties

rtdx
Property rtdx is a subclass of the ticcs link and represents the RTDX portion
of a link for CCS IDE. As shown in the example, rtdx has properties of its own
that you can set, such as timeout, and that report various states of the link.

get(cc.rtdx)

ans =

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

In addition, you can create an alias to the rtdx portion of a link, as shown
in this code example.

rx=cc.rtdx

RTDX channels : 0

Now you can use rx with the functions in Embedded IDE Link, such as get or
set. If you have two open channels, the display looks like the following

get(rx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {2x3 cell}
procType: 98
timeout: 10

when the processor is from the C62 family.

2-51

2 Automation Interface

rtdxchannel
Property rtdxchannel, along with numchannels and proctype, is a read-only
property for the RTDX portion of a link for CCS IDE. To see the value of
this property, use get with the link. Neither set nor invoke work with
rtdxchannel.

rtdxchannel is a cell array that contains the channel name, handle, and
mode for each open channel for the link. For each open channel, rtdxchannel
contains three fields, as follows:

.rtdxchannel{i,1} Channel name of the ith-channel, i from 1 to the
number of open channels

.rtdxchannel{i,2} Handle for the ith-channel

.rtdxchannel{i,3} Mode of the ith-channel, either 'r' for read or
'w' for write

With four open channels, rtdxchannel contains four channel elements and
three fields for each channel element.

timeout
Property timeout specifies how long CCS IDE waits for any process to finish.
Two timeout periods can exist — one global, one local. You set the global
timeout when you create a link for CCS IDE. The default global timeout
value 10 s. However, when you use functions to read or write data to CCS
IDE or your processor, you can set a local timeout that overrides the global
value. If you do not set a specific timeout value in a read or write process
syntax, the global timeout value applies to the operation. Refer to the help
for the read and write functions for the syntax to set the local timeout value
for an operation.

version
Property version reports the version number of your RTDX software. When
you create a ticcs object, version contains a string that reports the version
of the RTDX application that you are using. You cannot change this string.
When you upgrade the API, or CCS IDE, the string changes to match. Use
display to see the version property value for a link. This example shows
the apiversion value for object rx.

2-52

ticcs Object Properties

get(rx) % rx is an alias for cc.rtdx.

ans =

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

2-53

2 Automation Interface

Managing Custom Data Types with the Data Type Manager
Using custom data types, called typedefs (using the C keyword typedef), is
one of the complications you encounter when you use hardware-in-the-loop
(HIL) to run a function in your project from MATLAB. Because MATLAB
does not recognize custom type definitions you use in your projects, it cannot
interpret data that you define in your project code with the typedef keyword,
or use as arguments in your function prototype (declaration).

To allow you to use functions that include custom type definitions in function
calls, Embedded IDE Link offers the Data Type Manager (DTM), a tool for
defining custom type definitions to MATLAB. Using options in the DTM,
you define one or more custom data types for a project and use them in the
project. Or you define your custom data types and save them to use in many
projects. This second feature is particularly useful when you use the same
custom data types in many projects. Rather than redefining your custom
types for each new project or function, you reload the types from an earlier
project to use them again.

As programmers, usually you use typedefs for one or more of a few reasons:

• Make your code more accessible by providing more information about the
variable(s)

• Create a Boolean data type that C does not provide

• Define structures in your programs

• Define nonstandard data types

The DTM lets you define all of these things in the MATLAB context so your
C function that uses typedefs works with your MATLAB command line
functions. For reference information about the DTM, go to datatypemanager.

Entering

datatypemanager(cc)

2-54

Managing Custom Data Types with the Data Type Manager

at the MATLAB command line opens the DTM, with the Data Type Manager
dialog box shown here:

When the DTM opens, a variety of information and options displays in the
Data Type Manager dialog box:

• Typedef name (Equivalent data type)— provides a list of default data
types. When you create a typedef, you see it added to this list.

The lowercase versions of the data types appear because MATLAB does
not recognize the initial capital versions automatically. In the data type
list the project data type with the initial capital letter is mapped to the
lowercase MATLAB data type.

• Add typedef— opens the Add Typedef dialog box so you can add one or
more typedefs to your object. Your added typedef appears on the Typedef
name (Equivalent data type) list and is added to your ticcs object. Also,

2-55

2 Automation Interface

when you pass the cc object to the DTM, and then add a typedef, the
command

cc.type

returns the list of data types in the type property of your cc object,
including the typedefs you added.

• Remove typedef— removes a selected typedef from the Typedef name
(Equivalent data type) list.

• Load session — loads a previously saved session so you can use the
typedefs you defined earlier without reentering them.

• Refresh list — updates the list in Typedefs name (Equivalent data
type). Refreshing the list ensures the contents are current. If you changed
your project data type content or loaded a new project, this updates the
type definitions in the DTM.

• Close— closes the DTM and prompts you to save the session information.
This is the only way to save your work in this dialog box. Saving the session
creates an M-file you can reload into the DTM later.

Adding Custom Type Definitions to MATLAB
Every custom type definition in your project must appear on the Typedef
name (Equivalent data type) list for MATLAB to understand the data
types involved. To add entries the list, use the Add typedef option to identify
your type definition with a data type that MATLAB recognizes. When you
click Add typedef, the List of Known Data Types dialog box opens,
displaying the data types currently recognized by MATLAB. To make finding
a specific type easier, the known data types are grouped into categories:

• MATLAB types

• TI C types

• TI fixed point types

• Struct, union, enum types

• Other (e.g. pointers, typedefs)

2-56

Managing Custom Data Types with the Data Type Manager

Each custom type definition added in the DTM becomes part of the ticcs
object passed to the DTM in datatypemanager(objectname). The list of data
types in the object, both default and custom, is available by entering

objectname.type

at the command prompt.

The same list appears in the DTM on the Typedef name (Equivalent
data type)

MATLAB uses the type definitions when you run a function residing on your
processor from MATLAB.

To Add a Typedef to MATLAB
You use the DTM to add typedefs for MATLAB to recognize, such as:

• Typedefs that use a MATLAB data type in the type definition

• Typedefs that use an enumerated or union data type in the type definition

• Typedefs that use a structure in the type definition

2-57

2 Automation Interface

• Typedefs that use pointers or typedefs in the type definition

To define custom data types that use structs, enums, or unions from a project,
the project must be loaded on the processor before you add the custom type
definitions. Either load the project and .out file before you start the DTM, or
use the Load Program option in the DTM to load the .out file.

Note After a successful load process, you see the name of the file you loaded in
Loaded program. Otherwise, you get an error message that the load failed.

Only programs that you load from this dialog box appear in Program
loaded. Programs that are already loaded on your processor do not appear
there because MATLAB cannot determine what program you have loaded.

You need to know the custom definitions you used so you can add them in
the DTM. Use the options for list to verify whether you loaded a .out file
on the processor.

Create an object and load a program.

1 Create a ticcs object.

cc=ticcs;

2 Load a program on your processor. For example, the MATLAB command

load(cc,'c6711dskwdnoisf_c6000_rtwD\c6711dskwdnoisf.out');

loads the executable file from the model c6711dskwdnois.mdl on the
processor.

3 Start the DTM with the object you created.

datatypemanager(cc);

The DTM starts, showing the default data types.

2-58

Managing Custom Data Types with the Data Type Manager

2-59

2 Automation Interface

4 Click Add typedef to add your first custom data type. The List of Known
Data Types dialog box appears as shown.

Add a MATLAB type definition.

5 In Typedef, enter the name of the typedef as you defined it in your code.
For this example, use typedef1_matlab.

2-60

Managing Custom Data Types with the Data Type Manager

6 Select an appropriate MATLAB data type from the MATLAB Types in
Known Types. uint16 is the choice. Choose the data type that best
represents the data type in your code.

7 Click OK to close the dialog box and add the new type definition to the
Typedef name list.

Add an enumerated type definition.

8 Click Add Typedef.

9 From the Known Types list, select Struct, Enum, Union Types.

10 To define your type definition, give it a name in Typedef, such as
typedef_enum

2-61

2 Automation Interface

11 From the Struct, Enum, Union Types list, select the appropriate
enumerated data type to use with typedef_enum. The enum_TAG_myEnum
choice fills the enumerated type chosen.

12 Click OK to close the dialog box and add typedef_enum to your defined
types that MATLAB software recognizes.

Add a structure typedef.

13 Click Add Typedef.

14 From the Known Types list, select Struct, Enum, Union Types.

15 To define your type definition, give it a name in Typedef, such as
typedef_struct.

16 From the Struct, Enum, Union Types list, select the appropriate
enumerated data type to use with typedef_struct. This example uses
struct_TAG_mySTruct.

17 Click OK to close the dialog box and add the new data type to the list.

2-62

Managing Custom Data Types with the Data Type Manager

After you close the dialog box, the Typedef name list in the Data Type
Manager looks like this.

To check the data types in the cc object, enter

cc.type

which returns

Defined types : Void, Float, Double, Long, Int, Short, Char,

typedef1_matlab, typedef_enum, typedef struct

If your function declaration uses any of the types listed by cc.type, MATLAB
software can interpret the data correctly. For example, MATLAB software
interprets the typedef1_matlab data type as uint16.

2-63

2 Automation Interface

Clicking Close in the DTM prompts you to save your session. Saving the
session creates an M-file that contains operations that create your final list of
data types, identical to the data types in the Typedef name list.

The first line of the M-file is a function definition, where the name of the
function is the filename of the session you saved. In the stored M-file, you find
a function that includes add and remove operations that replicate the add and
remove typedef operations you used to create the list of known data types in
the DTM. For each time you added a typedef in the DTM, the M-file contains
an add command that adds the new type definition to the type property of
the cc object. When you removed a data type, you created an equivalent
clear command that removes the specified data type from the type property
of the cc object.

All the operations you performed adding and removing data types in the DTM
during the session are stored in the generated M-file that you save, including
mistakes you made while creating or removing type definitions. When you
load your saved session into the DTM, you see the same error messages
you saw, during the session. Keep in mind that you have already corrected
these errors.

2-64

3

Project Generator

• “Introducing Project Generator” on page 3-2

• “Project Generation and Board Selection” on page 3-3

• “Schedulers and Timing” on page 3-5

• “Project Generator Tutorial” on page 3-24

• “Setting Code Generation Parameters for TI Processors” on page 3-33

• “Setting Model Configuration Parameters” on page 3-36

• “Using Custom Source Files in Generated Projects” on page 3-48

• “Optimizing Embedded Code with Target Function Libraries” on page 3-52

• “Model Reference” on page 3-59

3 Project Generator

Introducing Project Generator
Project generator provides the following features for developing project and
generating code:

• Support automated project building for Texas Instruments’ Code Composer
Studio software that lets you create projects from code generated by
Real-Time Workshop and Real-Time Workshop Embedded Coder products.
The project automatically populates CCS projects in the CCS development
environment.

• Configure code generation using model configuration parameters and
processor preferences block options

• Select from two system target files to generate code specific to your
processor

• Configure project build process

• Automatically download and run your generated projects on your processor

Note You cannot generate code for C6000 processors in big-endian mode.
Code generation supports only little-endian processor data byte order.

3-2

Project Generation and Board Selection

Project Generation and Board Selection
Project Generator uses ticcs objects to connect to the IDE. Each time you
build a model to generate a project, the build process starts by issuing the
ticcs method, as shown here:

cc=ticcs('boardnum',boardnum,'procnum',procnum)

The software attempts to connect to the board (boardnum) and processor
(procnum) associated with the Board name and Processor number
parameters in the Target Preferences block in the model.

The result of the ticcs method changes, depending on the boards you
configured in CCS. The following table describes how the software selects the
board to connect to in your board configuration.

CCS Board Configuration State Response by Software

Code Composer Studio or Embedded
IDE Link software not installed.

Returns an error message asking you
to verify that you installed both Code
Composer Studio and Embedded
IDE Link properly.

Code Composer Studio software does
not have any configured boards.

Returns an error message that the
software could not find any boards in
your configuration. Use Setup Code
Composer Studio™ to configure at
least one board.

Code Composer Studio software has
one configured board.

Attaches to the board regardless of
the name of the board supplied in
the Target Preferences block. You
see a warning message telling you
which board the software selected.

Code Composer Studio software has
one board configured that does not
match the board name in the Target
Preferences block.(*)

Returns a warning message that
the software could not find the
board specified in the block and
connected to the board listed in the
warning message. The software
connects to the first board in your
CCS configuration.

3-3

3 Project Generator

CCS Board Configuration State Response by Software

Code Composer Studio has more
than one board configured. The
board name specified in the Target
Preferences block is one of the
configured boards.

Connects to the specified board.

Code Composer Studio has more
than one board configured. The
board name specified in the Target
Preferences block is not one of the
configured boards.(*)

Returns a message asking you
to select a board from the list of
configured boards. You have two
choices:
• Select a board to use for project
generation, and click OK. Your
selection does not change the
board specified in the Target
Preferences block. The software
connects to the selected board.

• Click Abort to stop the project
build and code generation process.
The software does not connect to
the IDE or board.

(*)You may encounter the situation where you do not have the correct board
configured in CCS because of one of the following conditions:

• You changed your board configuration after you added the Target
Preferences block to a model and saved the model. When you reopen the
model, the board specified in Board name in the block is no longer in
your configuration.

• You are working with a model from a source whose board configuration is
not the same as yours. The model includes a Target Preferences block.

Use ccsboardinfo at the MATLAB prompt to verify or review your configured
boards.

3-4

Schedulers and Timing

Schedulers and Timing

In this section...

“Configuring Models for Asynchronous Scheduling” on page 3-5

“Cases for Using Asynchronous Scheduling” on page 3-6

“Comparing Synchronous and Asynchronous Interrupt Processing” on
page 3-8

“Using Synchronous Scheduling” on page 3-10

“Using Asynchronous Scheduling” on page 3-10

“Multitasking Scheduler Examples” on page 3-11

Configuring Models for Asynchronous Scheduling
Using the scheduling blocks, you can use an asynchronous (real-time)
scheduler for your processor application. The asynchronous scheduler enables
you to define interrupts and tasks to occur when you want by using blocks in
the following block libraries:

• idelinklib_common

Note

• One way to view the block libraries is by entering the block library name at
the MATLAB command line. For example: >> idelinklib_common

• You cannot build and run the models in following examples without
additional blocks. They are for illustrative purposes only.

Also, you can schedule multiple tasks for asynchronous execution using the
blocks.

The following figures show a model updated to use the asynchronous
scheduler by converting the model to a function subsystem and then adding

3-5

3 Project Generator

a scheduling block (Hardware Interrupt) to drive the function subsystem in
response to interrupts.

Before
The following model uses synchronous scheduling provided by the base rate
in the model.

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

After
To convert to asynchronous operation, wrap the model in the previous figure
in a function block and drive the input from a Hardware Interrupt block. The
hardware interrupts that trigger the Hardware Interrupt block to activate an
ISR now triggers the model inside the function block.

Algorithm Inside the Function Call Subsystem Block
Here’s the model inside the function call subsystem in the previous figure. It
is the same as the original model that used synchronous scheduling.

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

Cases for Using Asynchronous Scheduling
The following sections present common cases for using the scheduling blocks
described in the previous sections.

3-6

Schedulers and Timing

Idle Task
The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. Subsystem execution of the reverberation
function is data driven via a background DMA interrupt-controlled ISR,
shown in the following figure.

Out1
1

Integer Delay

z
−2400

Feedback Gain

0.8

Delay Mix

.9

function

f()

In1
1

Hardware Interrupt Triggered Task
In the next figure, you see a case where a function (LED Control) runs in the
context of a hardware interrupt triggered task.

3-7

3 Project Generator

In this model, the Hardware Interrupt block installs a task that runs when
it detects an external interrupt. This task performs the specified function
with an LED.

Comparing Synchronous and Asynchronous Interrupt
Processing
Code generated for periodic tasks, both single- and multitasking, runs
via a timer interrupt. A timer interrupt ensures that the generated code
representing periodic-task model blocks runs at the specified period. The
periodic interrupt clocks code execution at runtime. This periodic interrupt
clock operates on a period equal to the base sample time of your model.

Note The execution of synchronous tasks in the model commences at the time
of the first timer interrupt. Such interrupt occurs at the end of one full base
rate period which follows timer setup. The time of the start of the execution
corresponds to t=0.

The following figure shows the relationship between model startup and
execution. Execution starts where your model executes the first interrupt,
offset to the right of t=0 from the beginning of the time line. Before the first
interrupt, the simulation goes through the timer set up period and one base
rate period.

3-8

Schedulers and Timing

����

����� 	
���
����
��
��������������

����������
�����

	
���
��
�����

	
���
��
�����

	
���
��
�����

Timer-based scheduling does not provide enough flexibility for some systems.
Systems for control and communications must respond to asynchronous
events in real time. Such systems may need to handle a variety of hardware
interrupts in an asynchronous, or aperiodic , fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

• If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the library to your model:

- A Hardware Interrupt block, to create an interrupt service routine to
handle hardware interrupts on the selected processor

- An Idle Task block, to create a task that runs as a separate thread

• Simulink sets the base rate priority to 40, the lowest priority.

• If your application does not service asynchronous interrupts, include only
the algorithm and device driver blocks that specify the periodic sample
times in the model.

Note Generating code from a model that does not service asynchronous
interrupts automatically enables and manages a timer interrupt. The
periodic timer interrupt clocks the entire model.

3-9

3 Project Generator

Using Synchronous Scheduling
Code that runs synchronously via a timer interrupt requires an interrupt
service routine (ISR). Each model iteration runs after an ISR services a
posted interrupt. The code generated for Embedded IDE Link uses a timer.
To calculate the timer period, the software uses the following equation:

Timer Period
CPU Clock Rate Base Sample Time

Low Resolu
_

(_ _) * (_ _)
_

=
ttion Clock Divider

Prescaler
_ _

*

The software configures the timer so that the base rate sample time for
the coded process corresponds to the interrupt rate. Embedded IDE Link
calculates and configures the timer period to ensure the desired sample rate.

Different processor families use the timer resource and interrupt number
differently. Entries in the following table show the resources each family uses.

The minimum base rate sample time you can achieve depends on two
factors—the algorithm complexity and the CPU clock speed. The maximum
value depends on the maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and you do not
define the sample time, Simulink assigns a default sample time of 0.2 second.

Using Asynchronous Scheduling
Embedded IDE Link enables you to model and automatically generate code
for asynchronous systems. To do so, use the following scheduling blocks:

• Hardware Interrupt (for bare-board code generation mode)

• Idle Task

The Hardware Interrupt block operates by

• Enabling selected hardware interrupts for the processor

• Generating corresponding ISRs for the interrupts

• Connecting the ISRs to the corresponding interrupt service vector table
entries

3-10

Schedulers and Timing

Note You are responsible for mapping and enabling the interrupts you
specify in the block dialog box.

Connect the output of the Hardware Interrupt block to the control input
of a function-call subsystem. By doing so, you enable the ISRs to call the
generated subsystem code each time the hardware raises the interrupt.

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected.

Multitasking Scheduler Examples
provides a scheduler that supports multiple tasks running concurrently and
preemption between tasks running at the same time. The ability to preempt
running tasks enables a wide range of scheduling configurations.

Multitasking scheduling also means that overruns, where a task runs beyond
its intended time, can occur during execution.

To understand these examples, you must be familiar with the following
scheduling concepts:

• Preemption is the ability of one task to pause the processing of a running
task to run instead. With the multitasking scheduler, you can define a
task as preemptible—thus, another task can pause (preempt) the task
that allows preemption. The scheduler examples in this section that
demonstrate preemption, illustrate one or more tasks allowing preemption.

• Overrunning occurs when a task does not reach completion before it is
scheduled to run again. For example, overrunning can occur when a
Base-Rate task does not finish in 1 ms. Overrunning delays the next
execution of the overrunning task and may delay execution of other tasks.

Examples in this section demonstrate a variety of multitasking configurations:

• “Three Odd-Rate Tasks Without Preemption and Overruns” on page 3-14

3-11

3 Project Generator

• “Two Tasks with the Base-Rate Task Overrunning, No Preemption” on
page 3-15

• “Two Tasks with Sub-Rate 1 Overrunning Without Preemption” on page
3-16

• “Three Even-Rate Tasks with Preemption and No Overruns” on page 3-17

• “Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rate1
Tasks Overrun” on page 3-19

• “Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overruns”
on page 3-20

• “Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-Rate
1 Tasks Overrun” on page 3-22

Each example presents either two or three tasks:

• Base Rate task. Base rate is the highest rate in the model or application.
The examples use a base rate of 1ms so that the task should execute every
one millisecond.

• Sub-Rate 1. The first subrate task. Sub-Rate 1 task runs more slowly
than the Base-Rate task. Sub-Rate 1 task rate is 2ms in the examples so
that the task should execute every 2ms.

• Sub-Rate 2. In examples with three tasks, the second subrate task is
called Sub-Rate 2. Sub-Rate 2 tasks run more slowly than Sub-Rate 1. In
the examples, Sub-Rate 2 runs at either 4ms or 3ms.

- When Sub-Rate 2 is 4ms, the example is called even.

- When Sub-Rate 2 is 3ms, the example is called odd.

Note The odd or even naming only identifies Sub-Rate 2 as being 3 or
4ms. It does not affect or predict the performance of the tasks.

The following legend applies to the plots in the next sections:

• Blue triangles () indicate when the task started.

3-12

Schedulers and Timing

• Dark red areas () indicate the period during which a task is running

• Pink areas () within dark red areas indicate a period during which a
running task is suspended—preempted by a task with higher priority

3-13

3 Project Generator

Three Odd-Rate Tasks Without Preemption and Overruns
In this three task scenario, all of the tasks run as scheduled. No overruns
or preemptions occur.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms

Sub-Rate 1 2ms 2ms

Sub-Rate 2 3ms 3ms

3-14

Schedulers and Timing

Two Tasks with the Base-Rate Task Overrunning, No
Preemption
In this two rate scenario, the Base-Rate overruns the 1ms time intended and
prevents the subrate task from completing successfully or running every 2ms.

• Sub-Rate 1 does not allow preemption and fails to run when scheduled, but
is never interrupted.

• The Base-Rate runs every 2ms and Sub-Rate 1 runs every 4ms instead
of 2ms.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

Sub-Rate 1 2ms 4ms (overrunning)

3-15

3 Project Generator

Two Tasks with Sub-Rate 1 Overrunning Without Preemption
In this example, two rates running simultaneously—the Base-Rate task and
one subrate task. Both the Base-Rate task and the Sub-Rate 1 task overrun.

• Base-Rate runs every 2ms instead of 1ms.

- The Sub-Rate 1 task both overruns and is affected by the Base-Rate
task overrunning.

- The Base-Rate task overrun delays Sub-Rate 1 task execution by a
factor of 4.

• Sub-Rate 1 runs every 8ms rather than every 2ms.

• The Base-Rate runs at 1ms.

• The Base-Rate task preempts Sub-Rate 1 when it tries to execute.

• The Sub-Rate 1 tasks overrun, taking up to 5ms to complete rather than
2ms.

3-16

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

Sub-Rate 1 2ms 8ms (overrunning)

Three Even-Rate Tasks with Preemption and No Overruns
In the following three task scenario, the Base-Rate runs as scheduled and
preempts Sub-Rate 1.

• Both the Base-Rate and Sub-Rate 1 tasks preempt Sub-Rate 2 task
execution.

• Preempting the subrate tasks does not prevent the subrate tasks from
running on schedule.

3-17

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms

Sub-Rate 1 2ms 2ms

Sub-Rate 2 4ms 4ms

3-18

Schedulers and Timing

Three Odd-Rate Tasks Without Preemption and the Base and
Sub-Rate1 Tasks Overrun
Three tasks running simultaneously—the Base-Rate task and two subrate
tasks.

• Both the Base-Rate task and the Sub-Rate 1 task overrun.

• The Base-Rate task runs every 2ms instead of 1ms.

• Sub-Rate 1 and Sub-Rate 2 task execution is delayed by a factor of
2—Sub-Rate 1 runs every 4ms rather than every 2ms and Sub-Rate 2 runs
every 6ms instead of 3ms.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

Sub-Rate 1 2ms 4ms (overrunning)

Sub-Rate 2 3ms 6ms (overrunning)

3-19

3 Project Generator

Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task
Overruns
In this three task scenario, the Base-Rate preempts Sub-Rate 1 which is
overrunning.

• The overrunning subrate causes Sub-Rate 1 to execute every 4ms instead
of 2ms.

• Every other fourth execution of Sub-Rate 2 does not occur.

• Instead of executing at t=0, 3, 6, 9, 12, 15, 18,…, Sub-Rate 2 executes at
t=0, 3, 9, 12, 15, 21, and so on.

• The t=6 and t=18 instances do not occur.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

3-20

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Sub-Rate 1 2ms 4ms (overrunning)

Sub-Rate 2 3ms 6ms (overrunning and
skipping every other
fourth execution)

3-21

3 Project Generator

Three Even-Rate Tasks with Preemption and the Base-Rate
and Sub-Rate 1 Tasks Overrun
In this three-task scenario, two of the tasks overrun—the Base-Rate and
Sub-Rate 1.

• The overrunning Base-Rate executes every 2ms.

• Sub-Rate 1 overruns due to the Base-Rate overrun, doubling the execution
rate.

• Also, Sub-Rate 1 is overrunning as well, doubling the execution rate again,
from the intended 2ms to 8ms.

• Sub-Rate 2 responds to the overrunning Base-Rate and Sub-Rate 1 tasks
by running every 16ms instead of every 4ms.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

3-22

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Sub-Rate 1 2ms 8ms (overrunning)

Sub-Rate 2 3ms 16ms (overrunning)

3-23

3 Project Generator

Project Generator Tutorial

In this section...

“Creating the Model” on page 3-25

“Adding the Target Preferences Block to Your Model” on page 3-25

“Specify Configuration Parameters for Your Model” on page 3-29

In this tutorial you will use the Embedded IDE Link software to:

• Build a model.

• Generate a project from the model.

• Build the project and run the binary on a processor.

Note The model demonstrates project generation. You cannot not build and
run the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Create a model application.

2 Add a Target Preferences block from the Embedded IDE Link library to
your model.

3 In the Target Preferences block, verify and set the block parameters for
your hardware or simulator.

4 Set the configuration parameters for your model, including

• Solver parameters such as simulation start and solver options

• Real-Time Workshop software options such as processor configuration
and processor compiler selection

5 Generate your project.

6 Review your project in CCS.

3-24

Project Generator Tutorial

Creating the Model
To create the model for audio reverberation, follow these steps:

1 Start Simulink software.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset™ blocks to create
the following model.

Look for the Integer Delay block in the Discrete library of Simulink blocks
and the Gain block in the Commonly Used Blocks library. Do not add the
Custom Board for TI CCS block at this time.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
So that you can configure your model to work with TI processors, Embedded
IDE Link supplies a Target Preferences/Custom Board block for Texas
Instruments processors.

Entering idelinklib_ticcs at the MATLAB software prompt opens the block
library. This block library is included in Embedded IDE Link idelinklib
blockset in the Simulink Library browser.

3-25

3 Project Generator

Adding a Target Preferences block to a model triggers a dialog box that asks
about your model configuration settings. The message tells you that the model
configuration parameters will be set to default values based on the processor
specified in the block parameters. To set the parameters automatically, click
Yes. Clicking No dismisses the dialog box and does not set the parameters.

When you click Yes, the software sets the system target file to
ccslink_grt.tlc or ccslink_ert.tlc and sets the hardware options and
product-specific parameters in the model to default values. If you open the
model Configuration Parameters, you see the Embedded IDE Link pane
option on the select tree.

Clicking No prevents the software from setting the system target file and
the product specific options. When you open the model Configuration
Parameters for your model, you do not see the Embedded IDE Link pane
option on the select tree. To enable the options, select the ccslink_ert.tlc
or ccslink_grt.tlc system target file from the System Target File list in the
Real-Time Workshop pane options.

To add the Target Preferences block to your model, follow these steps:

1 Double-click Embedded IDE Link in the Simulink Library browser to open
the idelinklib blockset.

3-26

Project Generator Tutorial

2 Select Supported IDEs > Texas Instruments Code Composer Studio
block library.

3 Drag and drop the Custom Board for TI CCS block to your model as shown
in the following model window figure.

4 Double-click the Custom Board for TI CCS block in the model to open the
block dialog box.

3-27

3 Project Generator

3-28

Project Generator Tutorial

5 In the Block dialog box, select your processor from the Processor list.

6 Verify the CPU clock value and, if you are using a simulator, select
Simulator.

7 Verify the settings on theMemory and Sections tabs to be sure they are
correct for the processor you selected.

8 Click OK to close the Target Preferences dialog box.

You have completed the model. Now configure the model configuration
parameters to generate a project in CCS IDE from your model.

Specify Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink software.

Setting Solver Parameters
After you have designed and implemented your digital signal processing model
in Simulink software, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking

3-29

3 Project Generator

Note Generated code does not honor Simulink software stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in generated
code, add a Stop Simulation block in your model.

When you use PIL, you can set the Solver options to any selection from
the Type and Solver lists.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Code Generation Parameters
To configure Real-Time Workshop software to use the correct processor
files and to compile and run your model executable file, set the options in
the Real-Time Workshop category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the code generation options
for your DSP:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, use the Browse button to set System target file
to ccslink_grt.tlc.

Setting Embedded IDE Link Parameters
To configure Real-Time Workshop software to use the correct code generation
options and to compile and run your model executable file, set the options in
the Embedded IDE Link category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the code generation options
for your processor:

1 From the Select tree, choose Embedded IDE Link to specify code
generation options that apply to your processor.

2 Set the following options in the pane under Project options:

• Project options should be Custom.

3-30

Project Generator Tutorial

• Set Compiler options string and Linker options string should be
blank.

3 Under Link Automation, verify that Export IDE link handle to base
workspace is selected and provide a name for the handle in IDE handle
name (optional).

4 Set the following Runtime options:

• Build action: Build_and_execute.

• Interrupt overrun notification method: None.

You have configured the Real-Time Workshop software options that let you
generate a project for you processor. You may have noticed that you did not
configure a few categories on the Select tree, such as Comments, Symbols,
and Optimization.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options
in these categories to provide information during the build and to run TLC
debugging when you generate code. Refer to your Simulink and Real-Time
Workshop documentation for more information about setting the configuration
parameters.

Building Your Project
After you set the configuration parameters and configure Real-Time
Workshop software to create the files you need, you direct the build process
to create your project:

1 Press OK to close the Configuration Parameters dialog box.

2 Click Ctrl+B to generate your project into CCS IDE.

When you click Build with Create_project selected for Build action,
the automatic build process starts CCS IDE, populates a new project in
the development environment, builds the project, loads the binary on the
processor, and runs it.

3-31

3 Project Generator

3 To stop processor execution, use the Halt option in CCS or enter cc.halt
at the MATLAB command prompt. (Where “cc” is the IDE handle name
you specified previously in Configuration Parameters.)

3-32

Setting Code Generation Parameters for TI Processors

Setting Code Generation Parameters for TI Processors
Before you generate code with Real-Time Workshop software, set the
fixed-step solver step size and specify an appropriate fixed-step solver if the
model contains any continuous-time states. At this time, you should also
select an appropriate sample rate for your system. Refer to your Real-Time
Workshop User’s Guide documentation for additional information.

Note Embedded IDE Link does not support continuous states in Simulink
software models for code generation. In the Solver options in the
Configuration Parameters dialog box, you must select Discrete (no
continuous states) as the Type, along with Fixed step.

The Real-Time Workshop pane of the Configuration Parameters dialog
box lets you set numerous options for the real-time model. To open the
Configuration Parameters dialog box, select Simulation > Configuration
Parameters from the menu bar in your model.

The following figure shows the configuration parameters categories when
you are using Embedded IDE Link.

3-33

3 Project Generator

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop software builds and runs your model. The
first categories under Real-Time Workshop in the tree apply to all Real-Time
Workshop software processors. They always appear on the list.

The last category under Real-Time Workshop is specific to the Embedded
IDE Link system target filesccslink_grt.tlc and ccslink_ert.tlc and
appear when you select either file.

When you select your processor file in Target Selection on the Real-Time
Workshop pane, the options change in the tree.

For Embedded IDE Link, the processor to select is ccslink_grt.tlc.
Selecting either the ccslink_grt.tlc or ccslink_ert.tlc adds the
Embedded IDE Link options to the Select tree. The ccslink_grt.tlc file is

3-34

Setting Code Generation Parameters for TI Processors

appropriate for all projects. Select ccslink_ert.tlc when you are developing
projects or code for embedded processors (requires Real-Time Workshop
Embedded Coder software) or you plan to use Processor-in-the-Loop features.

The following sections present each configuration parameters Select tree
category and the relevant options available in each.

3-35

3 Project Generator

Setting Model Configuration Parameters

In this section...

“Target File Selection” on page 3-37

“Build Process” on page 3-38

“Custom Storage Class” on page 3-38

“Report Options” on page 3-38

“Debug Pane Parameters” on page 3-39

“Optimization Pane Parameters” on page 3-40

“Embedded IDE Link Pane Parameters” on page 3-42

“Default Project Configuration — Custom” on page 3-47

Use the options in the Select tree under Real-Time Workshop to perform
the following configuration tasks.

• Select your processor file.

• Configure your build process.

• Specify whether to use custom storage classes.

Selecting the system target (ccslink_grt.tlc or ccslink_ert.tlc) in
System target file enables Embedded IDE Link configuration options in the
Embedded IDE Link pane.

3-36

Setting Model Configuration Parameters

Target File Selection

System target file
Clicking Browse opens the processor File Browser where you select
ccslink_grt.tlc as your Real-Time Workshop System target file for
Embedded IDE Link.

3-37

3 Project Generator

If you are using Real-Time Workshop Embedded Coder software or plan to
use PIL, select the ccslink_ert.tlc processor in System target file.

Build Process
Embedded IDE Link software does not use makefiles or the build process to
generate code. Code generation is project based so the options in this group
do not apply.

Custom Storage Class
When you generate code from a model employing custom storage classes
(CSC), make sure to clear Ignore custom storage classes. This setting
is the default value for Embedded IDE Link and for Real-Time Workshop
Embedded Coder.

When you select Ignore custom storage classes,

• Objects with CSCs are treated as if you set their storage class attribute
to Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a processor that does not
support CSCs, such as the generic real-time processor (GRT), without having
to reconfigure your parameter and signal objects.

Generate code only
The Generate code only option does not apply to generating code with
Embedded IDE Link. To generate source code without building and executing
the code on your processor, select Embedded IDE Link from the Select tree.
Then, under Runtime, select Create project for Build action. You cannot
use DSP/BIOS features when you use the Create project option for the
Build action.

Report Options
Two options control HTML report generation during code generation.

3-38

Setting Model Configuration Parameters

• “Create Code Generation report” on page 3-39

• “Launch report automatically” on page 3-39

Create Code Generation report
After you generate code, this option tells the software whether to generate
an HTML report that documents the C code generated from your model.
When you select this option, Real-Time Workshop writes the code
generation report files in the html subdirectory of the build directory. The
top-level HTML report file is named modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop. You can also use the
following command at the MATLAB prompt to get more information.

docsearch 'Create code generation report'

In the Navigation options, when you select Model-to-code and
Code-to-model, your HTML report includes hyperlinks to various features
in your Simulink model.

Launch report automatically
This option directs Real-Time Workshop to open a MATLAB Web browser
window and display the code generation report. If you clear this option,
you can open the code generation report (modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html) manually in a MATLAB Web browser
window or in another Web browser.

Debug Pane Parameters
Real-Time Workshop uses the processor Language Compiler (TLC) to
generate C code from the model.rtw file. The TLC debugger helps you
identify programming errors in your TLC code. Using the debugger, you can

• View the TLC call stack.

• Execute TLC code line-by-line and analyze and/or change variables in a
specified block scope.

3-39

3 Project Generator

When you select Debug from the Select tree, you see the Debug options as
shown in the next figure. In this dialog box, you set options that are specific
to Real-Time Workshop process and TLC debugging.

For details about using the options in Debug, refer to “About the TLC
Debugger” in your Real-Time Workshop processor Language Compiler
documentation.

Optimization Pane Parameters
On the Optimization pane in the Configuration Parameters dialog box, you
set options for the code that Real-Time Workshop generates during the build
process. You use these options to tailor the generated code to your needs.
Select Optimization from the Select tree on the Configuration Parameters
dialog box. The figure shows the Optimization pane when you select the

3-40

Setting Model Configuration Parameters

system target file ccslink_grt.tlc under Real-Time Workshop system
target file.

These are the options typically selected for Real-Time Workshop:

• Conditional input branch execution

• Signal storage reuse

• Enable local block outputs

• Reuse block outputs

• Eliminate superfluous local variables (Expression folding)

• Loop unrolling threshold

• Optimize initialization code for model reference

3-41

3 Project Generator

For more information about using these and the other Optimization options,
refer to your Real-Time Workshop documentation.

Embedded IDE Link Pane Parameters
On the select tree, the Embedded IDE Link entry provides options in these
areas:

• Runtime— Set options for run-time operations, like the build action

• Project Options— Set build options for your project code generation

• Code Generation— Configure your code generation requirements

• Link Automation— Export a ticcs object to your MATLAB workspace

• Diagnostic options — Determine how the code generation process
responds when you use source code replacement, either in the Target
Preferences block Board custom code options, or in the Real-Time
Workshop Custom Code options in the configuration parameters.

Runtime Options
Before you are able to an executable to run on any Texas Instruments
processor, you must configure the run-time options for the source model.

By selecting values for the options available, you configure the operation
of your processor.

Build action
To specify to Real-Time Workshop software what to do when you click Build,
select one of the following options. The actions are cumulative—each listed
action adds features to the previous action on the list and includes all the
previous features:

• Generate_code_only— Directs Real-Time Workshop software to generate
ANSI C code only from the model. It does not use the Texas Instruments
software tools, such as the compiler and linker, and you do not need to have
CCS installed. Also, MATLAB software does not create the connection to
CCS that results from the other options. This option does not build code for

3-42

Setting Model Configuration Parameters

TI processors. You cannot use this option when you set the system target
file to either ccslink_grt.tlc or ccslink_ert.tlc.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in
a build directory named modelname_linkforccs_rtw in your MATLAB
working directory. This file set contains many of the same files that
Real-Time Workshop software generates to populate a CCS project when
you choose Create_Project for the build action.

• Create_Project— Directs Real-Time Workshop software to start CCS and
populate a new project with the files from the build process. This option
offers a convenient way to build projects in CCS.

• Archive_library— Directs Real-Time Workshop software to archive the
project for this model. Use this option when you plan to use the model in
a model reference application. Model reference requires that you archive
your CCS projects for models that you use in model referencing.

• Build— Builds the executable COFF file, but does not download the file
to the processor.

• Build_and_execute — Directs Real-Time Workshop software to build,
download, and run your generated code as an executable on your processor.

• Create_processor_in_the_loop_project — Directs the Real-Time
Workshop code generation process to create PIL algorithm object code as
part of the project build.

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Real-Time Workshop software
when to stop the code generation and build process.

To run your model on the processor, select Build_and_execute. This selection
is the default build action; Real-Time Workshop software automatically
downloads and runs the model on your board.

Note When you build and execute a model on your processor, the Real-Time
Workshop software build process resets the processor automatically. You do
not need to reset the board before building models.

3-43

3 Project Generator

Interrupt overrun notification method
To enable the overrun indicator, choose one of three ways for the processor
to respond to an overrun condition in your model:

• None— Ignore overruns encountered while running the model.

• Print_message — When the DSP encounters an overrun condition, it
prints a message to the standard output device, stdout.

• Call_custom_function — Respond to overrun conditions by calling
the custom function you identify in Interrupt overrun notification
function.

Interrupt overrun notification function
When you select Call_custom_function from the Interrupt overrun
notification method list, you enable this option. Enter the name of the
function the processor should use to notify you that an overrun condition
occurred. The function must exist in your code on the processor.

Project Options
Before you run your model as an executable on any processor, you must
configure the Project options for the model. The default setting is Custom,
which does not use any optimization flags.

Compiler options string
To determine the degree of optimization provided by the TI optimizing
compiler, enter the optimization level to apply to files in your project. For
details about the compiler options, refer to your CCS documentation. When
you create new projects, Embedded IDE Link does not set any optimization
flags.

Click Get From IDE to import the compiler option setting from the current
project in the IDE. To reset the compiler option to the default value, click
Reset.

Linker options string
To specify the options provided by the TI linker during link time, you enter
the linker options as a string. For details about the linker options, refer to

3-44

Setting Model Configuration Parameters

your CCS documentation. When you create new projects, Embedded IDE
Link does not set any linker options.

Click Get From IDE to import the linker options string from the current
project in the IDE. To reset the linker options to the default value of no
options, click Reset.

System stack size (MAUs)
Enter the amount of memory to use for the stack. For more information,
refer to Enable local block outputs on the Optimization pane of the
Configuration Parameters dialog box. Block output buffers are placed on
the stack until the stack memory is fully allocated. After that, the output
buffers go in global memory. Also refer to the online Help system for more
information about Real-Time Workshop options for configuring and building
models and generating code.

Code Generation
From this category, you select options that define the way your code is
generated:

• Profile real-time execution

To enable the real-time execution profile capability, select Profile real-time
execution. With this selected, the build process instruments your code to
provide performance profiling at the task level or for atomic subsystems.
When you run your code, the executed code reports the profiling information
in an HTML report.

Link Automation
When you use Real-Time Workshop to build a model to a C6000 processor,
Embedded IDE Link makes a connection between MATLAB software and
CCS.

If you have used Embedded IDE Link, you are familiar with function ticcs,
which creates objects the reference between the IDE and MATLAB. This
option refers to the same object, called cc in the function reference pages.

3-45

3 Project Generator

Although MATLAB to CCS is a bridge to a specific instance of the CCS IDE,
it is an object that contains information about the IDE instance it refers to,
such as the board and processor it accesses. In this pane, the Export IDE
link handle to base workspace option lets you instruct Embedded IDE
Link to export the object to your MATLAB workspace, giving it the name you
assign in IDE link handle name.

Maximum time to complete IDE operations (s)
Specifies how long the software waits for IDE functions, such as read or
write, to return completion messages.

Diagnostic Option
Source file replacement selects the diagnostic action to take if the
software detects conflicts when you replace source code with custom code.
The diagnostic message responds to both source file replacement in the
Embedded IDE Link parameters and in the Real-Time Workshop Custom
code parameters in the configuration parameters for your model.

The following settings define the messages you see and how the code
generation process responds:

• none— Does not generate warnings or errors when it finds conflicts.

• warning— Displays a warning. warn is the default value.

• error— Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

The build operation continues if you select warning and the software detects
custom code replacement problems. You see warning messages as the build
progresses

Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your
custom code replacement files. Use none when the replacement process is
correct and you do not want to see multiple messages during your build.

3-46

Setting Model Configuration Parameters

Default Project Configuration — Custom
Although CCS offers two standard project configurations, Release and Debug,
models you build with Embedded IDE Link use a custom configuration that
provides a third combination of build and optimization settings—Custom.

Project configurations define sets of project build options. When you specify
the build options at the project level, the options apply to all files in your
project. For more information about the build options, refer to your TI CCS
documentation.

The default settings for Custom are the same as the Release project
configuration in CCS, except for the compiler options discussed in the next
section.

Compiler Options in Custom Project Configuration
When you create a new project or build a project from a model, your project
and model inherit the build configuration settings from the configuration
Custom. The compiler settings in Custom differ from the settings in the default
Release and Debug configurations in CCS.

For the compiler settings, Custom does not use any options, to preserve
important features of the generated code. The Release configuration uses
the Release build optimizations set by CCS, with the addition of the -o2
optimization flag. The Debug configuration uses the CCS default debugging
options and adds the -g, -d, and _DEBUG flags.

For memory configuration, where Release uses the default memory model
that specifies near functions and data, Custom specifies far functions and
data. Your CCS documentation provides complete details on the compiler
build options.

You can change the individual settings or the build configuration within CCS.
Build configuration options that do not appear on these panes default to
match the settings for the Release build configuration in CCS.

3-47

3 Project Generator

Using Custom Source Files in Generated Projects

In this section...

“Preparing to Replace Generated Files With Custom Files” on page 3-48

“Replacing Generated Source Files with Custom Files When You Generate
Code” on page 3-50

The Board custom code options on the Board Info pane in the model’s
Target Preferences block enable you to replace a generated file with a custom
file you provide. By replacing a file, you can modify the output of the code
generation process to suit your needs. For file replacement during the code
generation process to work, your custom file must have the same name as
the file to replace.

The following sections show you how to:

• Identify the file to replace — “Preparing to Replace Generated Files With
Custom Files” on page 3-48

• Create the custom replacement file — “Preparing to Replace Generated
Files With Custom Files” on page 3-48

• Configure the target preferences to use the custom file when you generate
a project — “Replacing Generated Source Files with Custom Files When
You Generate Code” on page 3-50

For more information about the target preferences and the Board custom code
options, refer to Target Preferences/Custom Board in the online Help system.

Preparing to Replace Generated Files With Custom
Files
To change the content of a generated project, use custom code replacement
replace a generated file in the project. By replacing a generated file in a
project, you can make changes like the following in your generated project:

• Edit the file that contains linker directives to change the linking process,
such as mapping memory differently.

3-48

Using Custom Source Files in Generated Projects

• Modify a library file, such as a chip support library (.csl file)

• Add commands to a header file

• Modify data in a data file

• Add comments to a file for tracking or identifying the file or project

.

Determining the Name of the File to Replace
To replace a file created when you generate a project, you need the name of
the file to replace; the content to change; and the replacement file, including
the path to the file. Your model must include a target preferences block
configured for your processor, either a simulator or hardware.

Follow these steps to identify the file to replace in a project:

1 Open the configuration parameters for your model.

2 On the Select tree in the Configuration Parameter dialog box, select
Embedded IDE Link.

3 Set Build action to any entry on the list except Create
processor-in-the-loop project.

4 Click OK to close the dialog box.

5 Press Ctrl+B to build your model.

6 Look at the files in the project in the IDE. Find the file that contains the
information to supplement or replace.

7 Note the file name and location. You use this information to create your
custom replacement file.

Creating the Replacement File
To replace a file in a project during code generation, you need a new file with
the same name saved in a different directory. Creating your replacement file
from the file to replace increases the chances that the generated code will

3-49

3 Project Generator

work properly with the new file. The new file must have all of the information
the final project needs.

Follow these steps to create a file to use to replace a generated file in your
project.

1 Determine the name of the file to replace. Refer to “Determining the Name
of the File to Replace” on page 3-49 for how to do this.

2 Locate the file to replace. Copy the file and save it with the same name in
a new directory.

3 Open your new file and edit the file to add or remove the information to
change.

4 Save your changes to the file.

Replacing Generated Source Files with Custom Files
When You Generate Code
With the replacement file and location available, configure the build process to
use your replacement file. Parameters on the Target Preferences block dialog
box allow you to specify the replacement file to use. For more information
about the board custom code options, refer to Target Preferences/Custom
Board

Follow these steps to configure the build process to use a replacement file.

1 Double-click Target Preferences in your model. Doing this opens a block
dialog box similar to the one in the following figure.

2 In the Board custom code options, select the type of file to replace—Source
files or Libraries.

3 Enter the name of your replacement file and path in the text field.

The build process recognizes two directory path tokens:

• $MATLAB to refer to your MATLAB root directory

• $install_dir to refer to the root of your IDE installation.

3-50

Using Custom Source Files in Generated Projects

4 Click OK to close the dialog box.

5 Open the configuration parameters for your model and select the Build
action to use to build your model.

6 From the Source code replacement list, select warning or error to see
messages when the build process replaces files.

7 Click OK to save your configuration.

8 Return to the model window and press Ctrl+B to build your project. The
generated project contains your replacement file instead of generating
the matching file.

3-51

3 Project Generator

Optimizing Embedded Code with Target Function Libraries

In this section...

“About Target Function Libraries and Optimization” on page 3-52

“Using a Processor-Specific Target Function Library to Optimize Code”
on page 3-54

“Process of Determining Optimization Effects Using Real-Time Profiling
Capability” on page 3-55

“Reviewing Processor-Specific Target Function Library Changes in
Generated Code” on page 3-56

“Reviewing Target Function Library Operators and Functions” on page 3-58

“Creating Your Own Target Function Library” on page 3-58

About Target Function Libraries and Optimization
A target function library is a set of one or more function tables that define
processor- and compiler-specific implementations of functions and arithmetic
operators. The code generation process uses these tables when it generates
code from your Simulink model.

The software registers processor-specific target function libraries during
installation. To use one of the libraries, select the set of tables that correspond
to functions implemented by intrinsics or assembly code for your processor
from the Target function library list in the model configuration parameters.
To do this, complete the following steps:

1 In your model, select Simulation > Configuration Parameters.

2 In the Configuration Parameters dialog box, select Real-Time Workshop
and Interface.

3 Set the Target function library parameter to the appropriate library for
your processor.

After you select the processor-specific library, the model build process uses the
library contents to optimize generated code for that processor. The generated
code includes processor-specific implementations for sum, sub, mult, and div,

3-52

Optimizing Embedded Code with Target Function Libraries

and various functions, such as tan or abs, instead of the default ANSI®

C instructions and functions. The optimized code enables your embedded
application to run more efficiently and quickly, and in many cases, reduces the
size of the code. For more information about target function libraries, refer
to “Introduction to Target Function Libraries” in the Real-Time Workshop
Embedded Coder documentation.

Code Generation Using the Target Function Library
The build process begins by converting your model and its configuration set to
an intermediate form that reflects the blocks and configurations in the model.
Then the code generation phase starts.

Note Real-Time Workshop refers to the following conversion process as
replacement and it occurs before the build process generates a project.

During code generation for your model, the following process occurs:

1 Code generation encounters a call site for a function or arithmetic operator
and creates and partially populates a target function library entry object.

2 The entry object queries the target function library database for an
equivalent math function or operator. The information provided by the code
generation process for the entry object includes the function or operator
key, and the conceptual argument list.

3 The code generation process passes the target function library entry object
to the target function library.

4 If there is a matching table entry in the target function library, the query
returns a fully-populated target function library entry to the call site,
including the implementation function name, argument list, and build
information

5 The code generation process uses the returned information to generate code.

Within the target function library that you select for your model, the software
searches the tables that comprise the library. The search occurs in the order
in which the tables appear in either the Target Function Library Viewer or

3-53

3 Project Generator

the Target function library tool tip. For each table searched, if the search
finds multiple matches for a target function library entry object, priority
level determines the match to return. The search returns the higher-priority
(lower-numbered) entry.

For more information about target function libraries in the build process, refer
to “Introduction to Target Function Libraries” in the Real-Time Workshop
Embedded Coder documentation.

Using a Processor-Specific Target Function Library to
Optimize Code
As a best practice, you should select the appropriate target function library
for your processor after you verify the ANSI C implementation of your project.

Note Do not select the processor-specific target function library if you use
your executable application on more than one specific processor. The operator
and function entries in a library may work on more than one processor within
a processor family. The entries in a library usually do not work with different
processor families.

To use target function library for processor-specific optimization when you
generate code, you must install Real-Time Workshop Embedded Coder
software. Your model must include a Target Preferences block configured
for you intended processor.

Perform the following steps to select the target function library for your
processor:

1 Select Simulation > Configuration Parameters from the model menu
bar. The Configuration Parameters dialog box for your model opens.

2 On the Select tree in the Configuration Parameters dialog box, choose
Real-Time Workshop.

3 Use Browse to select as the System target file.

4 On the Select tree, choose Interface.

3-54

Optimizing Embedded Code with Target Function Libraries

5 On the Target function library list, select the processor family that
matches your processor. Then, click OK to save your changes and close
the dialog box.

With the target function library selected, your generated code uses the specific
functions in the library for your processor.

To stop using a processor-specific target function library, open the Interface
pane in the model configuration parameters. Then, select the C89/C90
(ANSI) library from the Target function library list.

Process of Determining Optimization Effects Using
Real-Time Profiling Capability
You can use the real-time profiling capability to examine the results of
applying the processor-specific library functions and operators to your
generated code. After you select a processor-specific target function library,
use the real-time execution profiling capability to examine the change in
program execution time.

Use the following process to evaluate the effects of applying a processor-specific
target function library when you generate code:

1 Enable real-time profiling in your model. Refer to in the online Help system.

2 Generate code for your project using the default target function library
C89/C90 ANSI.

3 Profile the code, and save the report.

4 Rebuild your project using a processor-specific target function library
instead of the C89/C90 ANSI library.

5 Profile the code, and save the second report.

6 Compare the profile report from running your application with the
processor-specific library selected to the profile results with the ANSI
library selected in the first report.

3-55

3 Project Generator

Reviewing Processor-Specific Target Function Library
Changes in Generated Code
Use one of the following techniques or tools to see the target function library
elements where they appear in the generated code:

• Review the Code Manually.

• Use Model-to-Code Tracing to navigate from blocks in your model to the
code generated from the block.

• Use a File Differencing Scheme to compare projects that you generate
before and after you select a processor-specific target function library.

Reviewing Code Manually
To see where the generated code uses target function library replacements,
review the file modelname.c . Look for code similar to the following statement

The function is the multiply implementation function registered in the
target function library. In this example, the function performs an optimized
multiplication operation. Similar functions appear for add, and sub. For more
information about the arguments in the function, refer to “Introduction to
Target Function Libraries” in the online Help system.

Using Model-to-Code Tracing
You can use the model-to-code report options in the configuration parameters
to trace the code generated from any block with target function library. After
you create your model and select a target function library, follow these steps
to use the report options to trace the generated code:

1 Open the model configuration parameters.

2 Select Report from the Select tree.

3 In the Report pane, select Create code generation report and
Model-to-code, and then save your changes.

4 Press Ctrl+B to generate code from your model.

3-56

Optimizing Embedded Code with Target Function Libraries

The Real-Time Workshop Report window opens on your desktop. For more
information about the report, refer to the Real-Time Workshop Embedded
Coder documentation.

5 Use model-to-code highlighting to trace the code generated for each block
with target function library applied:

• Right-click on a block in your model and select Real-Time
Workshop > Navigate to code from the context menu.

• Select Navigate-to-code to highlight the code generated from the block
in the report window.

Inspect the code to see the target function operator in the generated code.
For more information, refer to “Tracing Code Generated Using Your
Target Function Library” in the Real-Time Workshop Embedded Coder
documentation in the online Help system.

If a target function library replacement did not occur as you expected, use the
techniques described in “Examining and Validating Function Replacement
Tables” in the Real-Time Workshop Embedded Coder documentation to help
you determine why the build process did not use the function or operator.

Using a File Differencing Scheme
You can also review the target function library induced changes in your
project by comparing projects that you generate both with and without the
processor-specific target function library.

1 Generate your project with the default C89/C90 ANSI target function
library. Use Create Project, Archive Library, or Build for the Build
action in the Embedded IDE Link options.

2 Save the project to a new name—newproject1.

3 Go back to the configuration parameters for your model, and select a target
function library appropriate for your processor.

4 Regenerate your project.

5 Save the project with a new name—newproject2

3-57

3 Project Generator

6 Compare the contents of the modelname.c files from newproject1 and
newproject2. The differences between the files show the target function
library induced code changes.

Reviewing Target Function Library Operators and
Functions
Real-Time Workshop Embedded Coder software provides the Target Function
Library viewer to enable you to review the arithmetic operators and functions
registered in target function library tables.

To open the viewer, enter the following command at the MATLAB prompt.

RTW.viewTfl

For details about using the target function library viewer, refer to “Selecting
and Viewing Target Function Libraries” in the online Help system.

Creating Your Own Target Function Library
For details about creating your own library, refer to the following sections in
your Real-Time Workshop Embedded Coder documentation:

• “Introduction to Target Function Libraries”

• “Creating Function Replacement Tables”

• “Examining and Validating Function Replacement Tables”

3-58

Model Reference

Model Reference
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• Top model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop software detects
that your model contains referenced models. Simulink software generates
code for the referenced models and uses the generated code to build shared
library files for updating the model diagram and simulation. It also creates

3-59

3 Project Generator

an executable (a MEX file, .mex) for each reference model that is used to
simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on whether and how you change
the models and on the Rebuild options settings. You can access these
setting through theModel Reference pane of the Configuration Parameters
dialog box.

Model Reference in Code Generation
Real-Time Workshop software requires executables to generate code from
models. If you have not simulated your model at least once, Real-Time
Workshop software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop software calls
make_rtw on the top model, linking to all the library files it created for the
associated referenced models.

Using Model Reference
With few limitations or restrictions, Embedded IDE Link provides full support
for generating code from models that use model reference.

Build Action Setting
The most important requirement for using model reference with the TI’s
processors is that you must set the Build action (go to Configuration
Parameters > Embedded IDE Link) for all models referred to in the
simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

3-60

Model Reference

The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• DSP/BIOS is disabled for all referenced models. Only the top model
supports DSP/BIOS operation.

• Interrupt overrun notification method, Export IDE link handle
to the base workspace, and System stack size are disabled for the
referenced models.

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct processor. You must configure all the Target Preferences
blocks for the same processor.

To obtain information about which compiler to use and which archiver to
use to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does
not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Embedded IDE Link does not allow you to use certain
blocks or S-functions in reference models:

3-61

3 Project Generator

• No blocks from the C62x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No blocks from the C64x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No noninlined S-functions

• No driver blocks, such as the ADC or DAC blocks from any Target Support
Package™ or Target Support Package block library

Configuring processors to Use Model Reference
processors that you plan to use in Model Referencing must meet some general
requirements.

• A model reference compatible processor must be derived from the ERT or
GRT processors.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation processor.

• The External mode option is not supported in model reference Real-Time
Workshop software processor builds. Embedded IDE Link does not
support External mode. If you select this option, it is ignored during code
generation.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in Supporting Shared Utility
Directories in the Build Process in the Real-Time Workshop documentation.

To use an existing processor, or a new processor, with Model Reference, you
set the ModelReferenceCompliant flag for the processor. For information
on how to set this option, refer to ModelReferenceCompliant in the online
Help system.

If you start with a model that was created prior to version 2.4 (R14SP3), to
make your model compatible with the model reference processor, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

3-62

Model Reference

Models that you develop with versions 2.4 and later of Embedded IDE Link
automatically include the model reference capability. You do not need to
set the flag.

3-63

3 Project Generator

3-64

4

Verification

• “What Is Verification?” on page 4-2

• “Verifying Generated Code via Processor-in-the-Loop” on page 4-3

• “Profiling Code Execution in Real-Time” on page 4-9

• “System Stack Profiling” on page 4-17

4 Verification

What Is Verification?
Verification consists broadly of running generated code on a processor and
verifying that the code does what you intend. The components of Embedded
IDE Link combine to provide tools that help you verify your code during
development by letting you run portions of simulations on your hardware and
profiling the executing code.

Using the Automation Interface and Project Generator components,
Embedded IDE Link offers the following verification functions:

• Processor-in-the-Loop — A technique to help you evaluate how your process
runs on your processor

• Real-Time Task Execution Profiling — A tool that lets you see how the
tasks in your process run in real-time on your processor hardware

4-2

Verifying Generated Code via Processor-in-the-Loop

Verifying Generated Code via Processor-in-the-Loop

In this section...

“What is Processor-in-the-Loop Cosimulation?” on page 4-3

“About the PIL Block” on page 4-4

“Preparing Your Model to Generate a PIL Application” on page 4-5

“Setting Model Configuration Parameters to Generate the PIL Application”
on page 4-6

“Creating the PIL Block Application from a Model Subsystem” on page 4-6

“Running Your PIL Application to Perform Cosimulation and Verification”
on page 4-7

“PIL Issues and Limitations” on page 4-7

What is Processor-in-the-Loop Cosimulation?
Processor in the loop (PIL) cosimulation is a technique to help you evaluate
how well an algorithm, such as a control system or signal processing
algorithm, operates on the processor selected for the application.

Note PIL requires Real-Time Workshop Embedded Coder software.

Cosimulation reflects a division of labor where Simulink software models the
plant or test harness, while code generated from an algorithm in the model
runs on the processor hardware.

During the Real-Time Workshop Embedded Coder software code generation
process, you can create a PIL block from one of several Simulink software
components including a model, a subsystem in a model, or subsystem in a
library. You then place the generated PIL block inside a Simulink model that
serves as the test harness and run tests to evaluate the processor-specific
code execution behavior.

Definitions

4-3

4 Verification

PIL Algorithm

The algorithmic code, such as the signal processing algorithm, to test during
the PIL cosimulation. The PIL algorithm is in compiled object form to enable
verification at the object level.

PIL Application

The executable application that runs on the processor platform. The
Embedded IDE Link creates a PIL application by augmenting your
algorithmic code with the PIL execution framework. The PIL execution
framework code is then compiled as part of your embedded application.

The PIL execution framework code includes the string.h header file so that
the PIL application can use the memcpy function. The PIL application uses
memcpy to exchange data between the Simulink model and the cosimulation
processor.

PIL Block

A block you create from a subsystem in a model. When you run the simulation,
the PIL block acts as the interface between the model and the PIL application
running on the processor.

About the PIL Block
The PIL cosimulation block is the Simulink software block interface to PIL
and the interface between the Simulink model and the executable PIL
application running on the processor. Simulink model simulation inputs
and outputs of the PIL cosimulation block match the input and output
specification of the PIL algorithm.

The block is a basic building block that enables you to perform the following
operations:

• Select a PIL algorithm

• Build and download a PIL application

• Run a PIL cosimulation

4-4

Verifying Generated Code via Processor-in-the-Loop

The PIL block inherits the shape and signal names from the source subsystem
in your model, as shown in the following example. Inheritance is convenient
for copying the PIL block into the model to replace the original subsystem
for cosimulation.

Preparing Your Model to Generate a PIL Application
PIL verification begins with a model of the process to verify. Follow these
steps to prepare your model to create a PIL application and PIL block:

1 Develop the model of the process to simulate.

Use Simulink software to build a model of the process to simulate. The
blocks in the library can help you set up the timing and scheduling for
your model.

For information about building Simulink software models, refer to Getting
Started with Simulink in the online Help system.

2 Convert your process to a masked subsystem in your model.

For information about how to convert your process to a subsystem, refer to
Creating Subsystems in Using Simulink or in the online Help system.

3 Open the new masked subsystem and add a Target Preferences block to
the subsystem.

The block library contains the Target Preferences block to add to your
system. Configure the Target Preferences block for your processor. For
more information, refer to

4-5

4 Verification

Setting Model Configuration Parameters to Generate
the PIL Application
After you create your subsystem, set the configuration parameters for your
model to enable the model to generate a PIL block.

When you use PIL, you can set the configuration parameter Solver options
to any selection from the Type and Solver lists.

Use the following steps:

1 Configure your model to enable it to generate PIL algorithm code and a PIL
block from your subsystem.

a From the model menu bar, go to Simulation > Configuration
Parameters in your model to open the Configuration Parameters dialog
box.

b Choose Real-Time Workshop from the Select tree. Set the
configuration parameters for your model as required by Embedded IDE
Link software.

c Under Target selection, set the System target file to .

2 Configure the model to perform PIL building and PIL block creation.

a Select Embedded IDE Link on the Select tree.

b On the Build actionlist, select
Create_processor_in_the_loop_project to enable PIL.

c Click OK to close the Configuration Parameters dialog box.

Creating the PIL Block Application from a Model
Subsystem
Using PIL and PIL blocks to verify your processes begins with a Simulink
model of your process. To see an example, refer to the demo Getting Started
with Application Development in the demos for Embedded IDE Link.

4-6

Verifying Generated Code via Processor-in-the-Loop

Note Models can have multiple PIL blocks for different subsystems. They
cannot have more than one PIL block for the same subsystem. Including
multiple PIL blocks for the same subsystem causes errors and incorrect
results.

To create a PIL block, perform the following steps:

1 Right-click the masked subsystem in your model and select Real-Time
Workshop > Build Subsystem from the context menu.

A new model window opens and the new PIL block appears in it.

This step builds the PIL algorithm object code and a PIL block that
corresponds to the subsystem, with the same inputs and outputs. Follow
the progress of the build process in the MATLAB command window.

2 Copy the new PIL block from the new model to your model, either in
parallel to your masked subsystem to simulate the subsystem processes
concurrently, or replace your subsystem with the PIL block.

To see the PIL block used in parallel to a masked subsystem, refer to the
Getting Started with Application Development demo for your IDE among
the demos.

Running Your PIL Application to Perform Cosimulation
and Verification
After you add your PIL block to your model, click Simulation > Start to run
the PIL simulation and view the results.

PIL Issues and Limitations
Consider the following issues when you work with PIL blocks.

Generic PIL Issues
Refer to the Support Table section in the Real-Time Workshop Embedded
Coder documentation for general information about using the PIL block with
embedded link products. Refer to PIL Feature Support and Limitations.

4-7

4 Verification

Real-Time Workshop grt.tlc-Based Targets Not Supported
Real-Time Workshop grt.tlc-based targets are not supported for PIL.

To use PIL, select the target file provided by Embedded IDE Link software.

4-8

Profiling Code Execution in Real-Time

Profiling Code Execution in Real-Time

In this section...

“Overview” on page 4-9

“Profiling Execution by Tasks” on page 4-10

“Profiling Execution by Subsystems” on page 4-12

Overview
Real-time execution profiling in Embedded IDE Link software uses a set
of utilities to support profiling for synchronous and asynchronous tasks, or
atomic subsystems, in your generated code. These utilities record, upload, and
analyze the execution profile data.

Execution profiler supports profiling your code two ways:

• Tasks—Profile your project according to the tasks in the code.

• Atomic subsystems—Profile your project according to the atomic
subsystems in your model.

Note To perform execution profiling, you must generate your project from a
model in Simulink modeling environment.

When you enable profiling, you select whether to profile by task or subsystem.

To profile by subsystems, you must configure your model with at least one
atomic subsystem. To learn more about creating atomic subsystems, refer to
“Creating Subsystems” in the online help for Simulink software.

The profiler generates output in the following formats:

• Graphical display that shows task or subsystem activation, preemption,
resumption, and completion. All data appears in a MATLAB graphic with
the data notated by model rates or subsystems and execution time.

4-9

4 Verification

• An HTML report that provides statistical data about the execution of each
task or atomic subsystem in the running process.

These reports are identical to the reports you see if you use
profile(ticcs_obj,'execution','report') to view the execution results.
For more information about report formats, refer to profile. In combination,
the reports provide a detailed analysis of how your code runs on the processor.

Use this general process for profiling your project:

1 Create your model in Simulink modeling environment.

2 Enable execution profiling in the configuration parameters for your model.

3 Run your application.

4 Stop your application.

5 Get the profiling results with the profile function.

The following sections describe profiling your projects in more detail.

Profiling Execution by Tasks
To configure a model to use task execution profiling, perform the following
steps:

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link from the Select tree.

3 Select Profile real-time execution.

4 On the Profile by list, select Tasks to enable real-time task profiling.

4-10

Profiling Code Execution in Real-Time

5 By default, the Export IDE link handle to base workspace is enabled,
and the IDE link handle name is set to CCS_Obj.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

2 To stop the running program, select Debug > Halt in CCS or use
halt(handlename) from the MATLAB command prompt. Gathering
profiling data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter

profile(handlename, execution , report)

4-11

4 Verification

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for information about other reporting options.

The following figure shows the profiling plot from running an application
that has three rates—the base rate and two slower rates. The gaps in the
Sub-Rate2 task bars indicate preempted operations.

Profiling Execution by Subsystems
When your models use atomic subsystems, you have the option of profiling
your code based on the subsystems along with the tasks.

To configure a model to use subsystem execution profiling, perform the
following steps:

4-12

Profiling Code Execution in Real-Time

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link from the Select tree. The pane appears as
shown in the following figure.

3 Select Profile real-time execution.

4 On the Profile by list, select Atomic subsystems to enable real-time
subsystem execution profiling.

5 By default, the Export IDE link handle to base workspace is enabled,
and the IDE link handle name is set to CCS_Obj.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

4-13

4 Verification

2 To stop the running program, select Debug > Halt in CCS, or use
halt(handlename) from the MATLAB command prompt. Gathering profile
data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter:

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for more information.

The following figure shows the profiling plot from running an application that
has three subsystems—For Iterator Subsystem, For Iterator Subsystem1, and
Idle Task Subsystem.

4-14

Profiling Code Execution in Real-Time

The following figure presents the model that contains the subsystems reported
in the profiling plot.

4-15

4 Verification

Atomic Subsystem Profiling

To Workspace

simout

Rate Transition 3

Rate Transition 2

Rate Transition 1

Rate Transition

IdleTask
Subsystem

function ()Idle Task1
Idle Task

f()

Gain

.9

For Iterator
Subsystem1

for { ... } In 1Out 1

For Iterator
Subsystem

for { ... }In 1 Out 1

Feedback Gain

0.8

Constant

1

4-16

System Stack Profiling

System Stack Profiling

In this section...

“Overview” on page 4-17

“Profiling System Stack Use” on page 4-19

Overview
Embedded IDE Link software enables you to determine how your application
uses the processor system stack. Using the profilemethod, you can initialize
and test the size and usage of the stack. This information can help you
optimize both the size of the stack and how your code uses the stack.

To provide stack profiling, profile writes a known pattern to the addresses
in the stack. After you run your application for a while, and then stop your
application, profile examines the contents of the stack addresses. profile
counts each address that no longer contains the known pattern as used. The
total number of address that have been used, compared to the total number of
addresses you allocated, becomes the stack usage profile. This profile process
does not tell you how often any address was changed by your application.

You can profile the stack with both the hand written code in a project and
the code you generate from a model.

Note Stack profiling always reports 100% stack usage when your project
uses DSP/BIOS.

When you use profile to initialize and test the stack operation, the software
returns a report that contains information about stack size, usage, addresses,
and direction. With this information, you can modify your code to use the
stack efficiently. The following program listing shows the stack usage results
from running an application on a simulator.

profile(cc,'stack','report')

Maximum stack usage:

4-17

4 Verification

System Stack: 532/1024 (51.95%) MAUs used.

name: System Stack
startAddress: [512 0]

endAddress: [1535 0]
stackSize: 1024 MAUs

growthDirection: ascending

The following table describes the entries in the report:

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name assigned
to the stack.

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

endAddress Decimal address and
page

Lists the address of the
end of the stack and the
memory page.

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for the
stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

4-18

System Stack Profiling

Profiling System Stack Use
To profile the system stack operation, perform these tasks in order:

1 Load an application.

2 Set up the stack to enable profiling.

3 Run your application.

4 Request the stack profile information.

Note If your application initializes the stack with known values when you
run it, stack usage is reported as 100%. The value does not correctly reflect
the stack usage. For example, DSP/BIOS™ writes a fixed pattern to the stack
(0x00C0FFEE) when you run your project. This pattern prevents the stack
profiler from reporting the stack usage correctly. Disable DSP/BIOS to use
stack profiling in your project development.

Follow these steps to profile the stack as your application interacts with it. In
this example, cc is an existing ticcs object.

1 Load the application to profile.

2 Use the profile method with the setup input keyword to initialize the
stack to a known state.

profile(cc,'stack','setup')

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack. For C6000 processors, the pattern is A5.
For C2000 and C5000 processors, the pattern is A5A5 to account for the
address size. As long as your application does not write the same pattern to
the system stack, profile can report the stack usage correctly.

3 Run your application.

4 Stop your running application. Stack use results gathered from an
application that is running may be incorrect.

4-19

4 Verification

5 Use the profile method to capture and view the results of profiling the
stack.

profile(cc,'stack','report')

The following example demonstrates setting up and profiling the stack. The
ticcs object cc must exist in your MATLAB workspace and your application
must be loaded on your processor. This example comes from a C6713
simulator.

profile(cc,'stack','setup') % Set up processor stack--write A5 to the stack addresses.

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

run(cc)

halt(cc)

profile(cc,'stack','report') % Request stack use report.

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

4-20

5

Exporting Filter
Coefficients from FDATool

• “About FDATool” on page 5-2

• “Preparing to Export Filter Coefficients to Code Composer Studio Projects”
on page 5-4

• “Exporting Filter Coefficients to Your Code Composer Studio Project” on
page 5-9

• “Preventing Memory Corruption When You Export Coefficients to Processor
Memory” on page 5-15

5 Exporting Filter Coefficients from FDATool

About FDATool
Signal Processing Toolbox™ software provides the Filter Design and Analysis
tool (FDATool) that lets you design a filter and then export the filter
coefficients to a matching filter implemented in a CCS project.

Using FDATool with CCS IDE enables you to:

• Design your filter in FDATool

• Use CCS to test your filter on a processor

• Redesign and optimize the filter in FDATool

• Test your redesigned filter on the processor

For instructions on using FDATool, refer to the section “Filter Design and
Analysis Tool” in the Signal Processing Toolbox documentation.

Procedures in this chapter demonstrate how to use the FDATool export
options to export filter coefficients to CCS. Using these procedures, you can
perform the following tasks:

• Export filter coefficients from FDATool in a header file—“Exporting Filter
Coefficients from FDATool to the CCS IDE Editor” on page 5-9

• Export filter coefficients from FDATool to processor memory—“Replacing
Existing Coefficients in Memory with Updated Coefficients” on page 5-16

Caution As a best practice, export coefficients in a header file for the most
reliable results. Exporting coefficients directly to processor memory can
generate unexpected results or corrupt memory.

Also see the reference pages for the following Embedded IDE Link functions.
These primary functions allow you use to access variables and write them to
processor memory from the MATLAB Command window.

• address— Return the address of a symbol so you can read or write to it.

5-2

About FDATool

• ticcs— Create a connection between MATLAB software and CCS IDE so
you can work with the project in CCS from the MATLAB Command window.

• write — Write data to memory on the processor.

5-3

5 Exporting Filter Coefficients from FDATool

Preparing to Export Filter Coefficients to Code Composer
Studio Projects

In this section...

“Features of a Filter” on page 5-4

“Selecting the Export Mode” on page 5-5

“Choosing the Export Data Type” on page 5-6

Features of a Filter
When you create a filter in FDATool, the filter includes defining features
identified in the following table.

Defining
Feature

Description

Structure Structure defines how the elements of a digital
filter—gains, adders/subtractors, and delays—combine
to form the filter. See the Signal Processing Toolbox
documentation in the Online Help system for more
information about filter structures.

Design Method Defines the mathematical algorithm used to determine
the filter response, length, and coefficients.

Response
Type and
Specifications

Defines the filter passband shape, such as lowpass or
bandpass, and the specifications for the passband.

Coefficients Defines how the filter structure responds at each stage
of the filter process.

Data Type Defines how to represent the filter coefficients and
the resulting filtered output. Whether your filter uses
floating-point or fixed-point coefficients affects the filter
response and output data values.

When you export your filter, FDATool exports only the number of and value of
the filter coefficients and the data type used to define the coefficients.

5-4

Preparing to Export Filter Coefficients to Code Composer Studio™ Projects

Selecting the Export Mode
You can export a filter by generating an ANSI C header file, or by writing
the filter coefficients directly to processor memory. The following table
summarizes when and how to use the export modes.

To…
Use Export
Mode… When to Use Suggested Use

Add filter
coefficients
to a project in
CCS

C header
file

You implemented a
filter algorithm in your
program, but you did
not allocate memory on
your processor for the
filter coefficients.

• Add the generated ANSI C header file
to an appropriate project. Building
and loading this project into your
processor allocates static memory
locations on the processor and writes
your filter coefficients to those
locations.

• Edit the file so the header file allocates
extra processor memory and then add
the header file to your project. Refer
to “Allocating Sufficient or Extra
Memory for Filter Coefficients” on
page 5-15 in the next section.

(For a sample generated header file,
refer to“Reviewing ANSI C Header File
Contents” on page 5-12.)

Modify
the filter
coefficients in
an embedded
application
loaded on a
processor

Write
directly
to memory

You loaded a program
on your processor.
The program allocated
space in your processor
memory to store the
filter coefficients.

• Optimize your filter design in
FDATool.

Then,

• Write the updated filter coefficients
directly to the allocated processor
memory. Refer to section “Preventing
Memory Corruption When You Export
Coefficients to Processor Memory” on
page 5-15 for more information.

5-5

5 Exporting Filter Coefficients from FDATool

Choosing the Export Data Type
The export process provides two ways you can specify the data type to use
to represent the filter coefficients. Select one of the options shown in the
following table when you export your filter.

Specify Data Type for
Export

Description

Export suggested Uses the data type that FDATool suggests to
preserve the fidelity of the filter coefficients
and the performance of your filter in the
project

Export as Lets you specify the data type to use to
export the filter coefficients

FDATool exports filter coefficients that use the following data types directly
without modifications:

• Signed integer (8, 16, or 32 bits)

• Unsigned integer (8, 16, or 32 bits)

• Double-precision floating point (64 bits)

• Single-precision floating point (32 bits)

Filters in FDATool in the Signal Processing Toolbox software use
double-precision floating point. You cannot change the data type.

If you have installed Filter Design Toolbox™ software, you can use the
filter quantization options in FDATool to set the word and fraction lengths
that represent your filter coefficients. For information about using the
quantization options, refer to Filter Design and Analysis Tool in the Filter
Design Toolbox documentation in the Online help system.

If your filter uses one of the supported data types, Export suggested
specifies that data type.

If your filter does not use one of the supported data types, FDATool converts
the unsupported data type to one of the supported types and then suggests
that data type. For more information about how FDATool determines the data

5-6

Preparing to Export Filter Coefficients to Code Composer Studio™ Projects

type to suggest, refer to “How FDATool Determines the Export Suggested
Data Type” on page 5-7.

Follow these best-practice guidelines when you implement your filter
algorithm in source code and design your filter in FDATool:

• Implement your filter using one of the data types FDATool exports without
modifications.

• Design your filter in FDATool using the data type you used to implement
your filter.

To Choose the Export Data Type
When you export your filter, follow this procedure to select the export data
type to ensure the exported filter coefficients closely match the coefficients of
your filter in FDATool.

1 In FDATool, select Targets > Code Composer Studio IDE to open the
Export to Code Composer Studio IDE dialog box.

2 Perform one of the following actions:

• Select Export suggested to export the coefficients in the suggested
data type.

• Select Export as and choose the data type your filter requires from
the list.

Caution If you select Export as, the exported filter coefficients can
be very different from the filter coefficients in FDATool. As a result,
your filter cutoff frequencies and performance may not match your
design in FDATool.

How FDATool Determines the Export Suggested Data Type
By default, FDATool represents filter coefficients as double-precision
floating-point data. When you export your filter coefficients, FDATool
suggests the same data type.

5-7

5 Exporting Filter Coefficients from FDATool

If you set custom word and fraction lengths to represent your filter
coefficients, the export process suggests a data type to maintain the best
fidelity for the filter.

The export process converts your custom word and fraction lengths to a
suggested export data type, using the following rules:

• Round the word length up to the nearest larger supported data type. For
example, round an 18-bit word length up to 32 bits.

• Set the fraction length to the maintain the same difference between the
word and fraction length in the new data type as applies in the custom
data type.

For example, if you specify a fixed-point data type with word length of
14 bits and fraction length of 11 bits, the export process suggests an
integer data type with word length of 16 bits and fraction length of 13
bits, retaining the 3 bit difference.

5-8

Exporting Filter Coefficients to Your Code Composer Studio Project

Exporting Filter Coefficients to Your Code Composer Studio
Project

In this section...

“Exporting Filter Coefficients from FDATool to the CCS IDE Editor” on
page 5-9

“Reviewing ANSI C Header File Contents” on page 5-12

Exporting Filter Coefficients from FDATool to the CCS
IDE Editor
In this section, you export filter coefficients to a project by generating an
ANSI C header file that contains the coefficients. The header file defines
global arrays for the filter coefficients. When you compile and link the project
to which you added the header file, the linker allocates the global arrays in
static memory locations in processor memory.

Loading the executable file into your processor allocates enough memory
to store the exported filter coefficients in processor memory and writes the
coefficients to the allocated memory.

Use the following steps to export filter coefficients from FDATool to the CCS
IDE text editor.

1 Start FDATool by entering fdatool at the MATLAB command prompt.

fdatool % Starts FDATool.

2 Design a filter with the same structure, length, design method,
specifications, and data type you implemented in your source code filter
algorithm.

The following figure shows a Direct-form II IIR filter example that uses
second-order sections.

3 Click Store Filter to store your filter design. Storing the filter allows
you to recall the design to modify it.

5-9

5 Exporting Filter Coefficients from FDATool

4 To export the filter coefficients, select Targets > Code Composer Studio
IDE from the FDATool menu bar.

The Export to Code Composer Studio IDE dialog box opens, as shown in
the following figure.

5 Set Export mode to C header file.

6 In Variable names in C header file, enter variable names for the
Numerator, Denominator, Numerator length, and Denominator
length parameters where the coefficients will be stored.

The dialog box shows only the variables you need to export to define your
filter.

5-10

Exporting Filter Coefficients to Your Code Composer Studio Project

Note You cannot use reserved ANSI C programming keywords, such as
if or int as variable names, or include invalid characters such as spaces
or semicolons (;).

7 In Data type to use in export, select Export suggested to accept the
recommended export data type. FDATool suggests a data type that retains
filter coefficient fidelity.

You may find it useful to select the Export as option and select an export
data type other than the one suggested.

Caution If you deviate from the suggested data type, the exported filter
coefficients can be very different from the filter coefficients in FDATool. As
a result, your filter cutoff frequencies and performance may not match your
design in FDATool.

For more information about how FDATool decides which data type to
suggest, refer to “How FDATool Determines the Export Suggested Data
Type” on page 5-7.

8 If you know the board number and processor number of your DSP, enter
DSP Board # and DSP Processor # values to identify your board.

When you have only one board or simulator, Embedded IDE Link
software sets DSP Board # and DSP Processor # values for your board
automatically.

If you have more than one board defined in CCS Setup:

5-11

5 Exporting Filter Coefficients from FDATool

• Click Select target to open the Selection Utility: Embedded IDE Link
dialog box.

• From the list of boards and list of processors, select the board name
and processor name to use.

• Click Done to set the DSP Board # and DSP Processor # values.

9 Click Generate to generate the ANSI header file. FDATool prompts you
for a file name and location to save the generated header file.

The default location to save the file is your MATLAB working folder. The
default file name is fdacoefs.h.

10 Click OK to export the header file to the CCS editor.

If CCS IDE is not open, this step starts the IDE.

The export process does not add the file to your active project in the IDE.

11 Drag your generated header file into the project that implements the filter.

12 Add a #include statement to your project source code to include the new
header file when you build your project.

13 Generate a .out file and load the file into your processor. Loading the file
allocates locations in static memory on the processor and writes the filter
coefficients to those locations.

To see an example header file, refer to “Reviewing ANSI C Header File
Contents” on page 5-12.

Reviewing ANSI C Header File Contents
The following program listing shows the exported header (.h) file that
FDATool generates. This example shows a direct-form II filter that uses five
second-order sections. The filter is stable and has linear phase.

Comments in the file describe the filter structure, number of sections,
stability, and the phase of the filter. Source code shows the filter coefficients
and variables associated with the filter design, such as the numerator length
and the data type used to represent the coefficients.

5-12

Exporting Filter Coefficients to Your Code Composer Studio Project

/*

* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool

*

* Generated by MATLAB(R) 7.8 and the Signal Processing Toolbox 6.11.

*

* Generated on: xx-xxx-xxxx 14:24:45

*

*/

/*

* Discrete-Time IIR Filter (real)

* -------------------------------

* Filter Structure : Direct-Form II, Second-Order Sections

* Number of Sections : 5

* Stable : Yes

* Linear Phase : No

*/

/* General type conversion for MATLAB generated C-code */

#include "tmwtypes.h"

/*

* Expected path to tmwtypes.h

* $MATLABROOT\extern\include\tmwtypes.h

*/

#define MWSPT_NSEC 11

const int NL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T NUM[MWSPT_NSEC][3] = {

{

0.802536131462, 0, 0

},

{

0.2642710234701, 0.5285420469403, 0.2642710234701

},

{

1, 0, 0

},

{

0.1743690465012, 0.3487380930024, 0.1743690465012

},

5-13

5 Exporting Filter Coefficients from FDATool

{

0.2436793028081, 0.4873586056161, 0.2436793028081

},

{

1, 0, 0

},

{

0.3768793219093, 0.7537586438185, 0.3768793219093

},

{

1, 0, 0

}

};

const int DL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T DEN[MWSPT_NSEC][3] = {

{

1, 0, 0

},

{

1, -0.1842138030775, 0.1775781189277

},

{

1, 0, 0

},

{

1, -0.2160098642842, 0.3808329528195

},

{

1, 0, 0

}

};

5-14

Preventing Memory Corruption When You Export Coefficients to Processor Memory

Preventing Memory Corruption When You Export
Coefficients to Processor Memory

In this section...

“Allocating Sufficient or Extra Memory for Filter Coefficients” on page 5-15

“Example: Using the Exported Header File to Allocate Extra Processor
Memory” on page 5-15

“Replacing Existing Coefficients in Memory with Updated Coefficients”
on page 5-16

“Example: Changing Filter Coefficients Stored on Your Processor” on page
5-17

Allocating Sufficient or Extra Memory for Filter
Coefficients
You can allocate extra memory by editing the generated ANSI C header file.
You can then load the associated program file into your processor as described
in “Example: Using the Exported Header File to Allocate Extra Processor
Memory” on page 5-15. Extra memory lets you change filter coefficients and
overwrite existing coefficients stored in processor memory more easily.

To prevent problems when you update filter coefficients in a project, , such as
writing coefficients to unintended memory locations, use the C header file
export mode option in FDATool to update filter coefficients in your program.

Example: Using the Exported Header File to Allocate
Extra Processor Memory
You can edit the generated header file so the linked program file allocates
extra processor memory. By allocating extra memory, you avoid the problem
of insufficient memory when you export new coefficients directly to allocated
memory.

For example, changing the following command in the header file:

const real64_T NUM[47] = {...}

5-15

5 Exporting Filter Coefficients from FDATool

to

real64_T NUM[256] = {...}

allocates enough memory for NUM to store up to 256 numerator filter
coefficients rather than 47.

Exporting the header file to CCS IDE does not add the filter to your project.
To incorporate the filter coefficients from the header file, add a #include
statement:

#include "headerfilename.h"

Refer to “Exporting Filter Coefficients to Your Code Composer Studio Project”
on page 5-9 for information about generating a header file to export filter
coefficients.

When you export filter coefficients directly to processor memory, the export
process writes coefficients to as many memory locations as they need. The
write process does not perform bounds checking. To ensure you write to the
correct locations, and have enough memory for your filter coefficients, plan
memory allocation carefully.

Replacing Existing Coefficients in Memory with
Updated Coefficients
When you redesign a filter and export new coefficients to replace existing
coefficients in memory, verify the following conditions for your new design:

• Your redesign did not increase the memory required to store the coefficients
beyond the allocated memory.

Changes that increase the memory required to store the filter coefficients
include the following redesigns:

- Increasing the filter order

- Changing the number of sections in the filter

- Changing the numerical precision (changing the export data type)

• Your changes did not change the export data type.

5-16

Preventing Memory Corruption When You Export Coefficients to Processor Memory

Caution Identify changes that require additional memory to store the
coefficients before you begin your export. Otherwise, exporting the new filter
coefficients may overwrite data in memory locations you did not allocate for
storing coefficients. Also, exporting filter coefficients to memory after you
change the filter order, structure, design algorithm, or data type can yield
unexpected results and corrupt memory.

Changing the filter design algorithm in FDATool, such as changing from
Butterworth to Maximally Flat, often changes the number of filter coefficients
(the filter order), the number of sections, or both. Also, the coefficients from
the new design algorithm may not perform properly with your source code
filter implementation.

If you change the design algorithm, verify that your filter structure and
length are the same after you redesign your filter, and that the coefficients
will perform properly with the filter you implemented.

If you change the number of sections or the filter order, your filter will not
perform properly unless your filter algorithm implementation accommodates
the changes.

Example: Changing Filter Coefficients Stored on Your
Processor
This example writes filter coefficients to processor memory to replace the
existing coefficients. To perform this process, you need the names of the
variables in which your project stores the filter data.

Before you export coefficients directly to memory, verify that your project
allocated enough memory for the new filter coefficients. If your project
allocated enough memory, you can modify your filter in FDATool and then
follow the steps in this example to export the updated filter coefficients to
the allocated memory.

If your new filter requires additional memory space, use a C header file to
allocate memory on the processor and export the new coefficients as described
in “Exporting Filter Coefficients to Your Code Composer Studio Project” on
page 5-9.

5-17

5 Exporting Filter Coefficients from FDATool

For important guidelines on writing directly to processor memory, refer to
“Preventing Memory Corruption When You Export Coefficients to Processor
Memory” on page 5-15.

Follow these steps to export filter coefficients from FDATool directly to
memory on your processor.

1 Load the program file that contains your filter into CCS IDE to activate the
program symbol table. The symbol must contain the global variables you
use to store the filter coefficients and length parameters.

2 Start FDATool.

3 Click Filter Manager to open the Filter Manager dialog box, shown in
the following figure.

4 Highlight the filter to modify on the list of filters, and select Edit current
filter. The highlighted filter appears in FDATool for you to change.

5-18

Preventing Memory Corruption When You Export Coefficients to Processor Memory

If you did not store your filter from a previous session, design the filter
in FDATool and continue.

5 Click Close to dismiss the Filter Manager dialog box.

6 Adjust the filter specifications in FDATool to modify its performance.

7 In FDATool, select Targets > Code Composer Studio IDE to open the
Export to Code Composer Studio IDE dialog box.

Keep the export dialog box open while you work. When you do so, the
contents update as you change the filter in FDATool.

Tip Click Generate to export coefficients to the same processor memory
location multiple times without reentering variable names.

8 In the Export to Code Composer Studio dialog box:

• Set Export mode to Write directly to memory

• Clear Disable memory transfer warnings to get a warning if your
processor does not support the export data type.

9 In Variable names in target symbol table, enter the names of the
variables in the processor symbol table that correspond to the memory
allocated for the parameters, such as Numerator and Denominator.
Your names must match the names of the filter coefficient variables in
your program.

10 Select Export suggested to accept the recommended export data type.

5-19

5 Exporting Filter Coefficients from FDATool

For more information about how FDATool determines the data type to
suggest, refer to “How FDATool Determines the Export Suggested Data
Type” on page 5-7.

11 If you know the board number and processor number of your DSP, enter
DSP Board # and DSP Processor # values to identify your board.

Note When you have only one board or simulator, Embedded IDE Link
sets DSP Board # and DSP Processor # to your board automatically.

If you have more than one board defined in CCS Setup:

• Click Select target to open the Selection Utility: Embedded IDE Link
dialog box.

• Select the board name and processor name to use from the list of boards.

12 Click Generate to export your filter. If your processor does not support the
data type you export, you see a warning similar to the following message.

5-20

Preventing Memory Corruption When You Export Coefficients to Processor Memory

You can continue to export the filter, or cancel the export process. To
prevent this warning dialog box from appearing, select Disable memory
transfer warnings in the Export to Code Composer Studio IDE dialog box.

13 (Optional) Continue to optimize filter performance by modifying your
filter in FDATool and then export the updated filter coefficients directly
to processor memory.

14 When you finish testing your filter, return to FDATool, and click Store
filter to save your changes.

5-21

5 Exporting Filter Coefficients from FDATool

5-22

6

Function Reference

Operations on Objects for CCS IDE
(p. 6-2)

Work with links for CCS IDE

Operations on Objects for RTDX
(p. 6-4)

Work with links to RTDX

6 Function Reference

Operations on Objects for CCS IDE
activate (For CCS) Activate specified

CCS IDE project, file, or build
configuration

add (For CCS) Add files or new typedef
to active project in CCS IDE

address (For CCS) Return the memory
address and page value for a symbol
in CCS IDE

animate (For CCS) Run application on
processor to breakpoint

build (For CCS) Build active project in
CCS IDE

ccsboardinfo (For CCS) Information about boards
and simulators known to CCS IDE

cd (For CCS) Change CCS IDE working
folder

close (For CCS) Close CCS IDE files or
RTDX channel

dir (For CCS) List files in current CCS
IDE working directory

display (For CCS) Display properties of
object that refers to CCS IDE or
RTDX link

halt (For CCS) Terminate execution of
process running on processor

info (For CCS) Information about
processor

insert (For CCS) Add debug point to source
file or address in CCS

6-2

Operations on Objects for CCS IDE

isreadable (For CCS) Determine whether
MATLAB software can read
specified memory block

isrtdxcapable (For CCS) Determine whether
processor supports RTDX

isrunning (For CCS) Determine whether
processor is executing process

isvisible (For CCS) Determine whether CCS
IDE is running

iswritable (For CCS) Determine whether
MATLAB software can write to
specified memory block

load (For CCS) Transfer program file
(*.out, *.obj) to processor in active
project

new (For CCS) Create and open text file,
project, or build configuration in
CCS IDE

open (For CCS) Open channel to processor
or load file into CCS IDE

profile (For CCS) Code execution and stack
usage profile report

read (For CCS) Data from memory on
processor or in CCS

regread (For CCS) Value from processor
register

regwrite (For CCS) Write data values to
registers on processor

reload (For CCS) Reload most recent
program file to processor signal
processor

remove (For CCS) Remove file from active
CCS IDE project

6-3

6 Function Reference

reset (For CCS) Reset processor

restart (For CCS) Restore program counter
to entry point for current program

run (For CCS) Execute program loaded
on processor

symbol (For CCS) Program symbol table
from CCS IDE

ticcs (For CCS) Create object that refers
to CCS IDE

visible (For CCS) Set whether CCS IDE
window is visible while CCS runs

write (For CCS) Write data to memory on
processor

Operations on Objects for RTDX
close (For CCS) Close CCS IDE files or

RTDX channel

configure (For CCS) Define size and number of
RTDX channel buffers

disable (For CCS) Disable RTDX interface,
specified channel, or all RTDX
channels

display (For CCS) Display properties of
object that refers to CCS IDE or
RTDX link

enable (For CCS) Enable RTDX interface,
specified channel, or all RTDX
channels

flush (For CCS) Flush data or messages
from specified RTDX channels

6-4

Operations on Objects for RTDX™

isenabled (For CCS) Determine whether RTDX
link is enabled for communications

iswritable (For CCS) Determine whether
MATLAB software can write to
specified memory block

msgcount (For CCS) Number of messages in
read-enabled channel queue

open (For CCS) Open channel to processor
or load file into CCS IDE

readmat (For CCS) Matrix of data from RTDX
channel

readmsg (For CCS) Read messages from
specified RTDX channel

writemsg (For CCS) Write messages to
specified RTDX channel

6-5

6 Function Reference

6-6

7

Functions — Alphabetical
List

activate

Purpose (For CCS) Activate specified CCS IDE project, file, or build configuration

Syntax activate(cc,'objectname','type')

Description Use the activate(cc,'objectname','type') method to make a
project file, text file, or build configuration the active window in CCS
IDE. After a project file, text file, and build configuration becomes
active, you can apply other methods to it.

Inputs cc

cc is a handle for an instance of CCS IDE. Before using the
activate method, create cc using the ticcs function.

objectname

objectname is the project file, text file, or build configuration
file the activate method makes active. For project and text
files, enter the full file name including the extension. For
build configurations, enter 'Debug', 'Release', or any custom
configuration. Before using the activate method on a build
configuration, you first activate the project that contains the build
configuration.

type

type is the type of file objectname refers to. If you omit type from
the activate method, type defaults to 'project'. Enter one of
the following strings for type:

'project'— Indicates that objectname is a project file

'text'— Indicates that objectname is a text file

'buildcfg'— Indicates that objectname is a build configuration

Examples This example demonstrates how to use activate to change the active
project and document window.

After you create the projects, CCS IDE displays the active project in
bold lettering in the project view. Similarly, after you create the new

7-2

activate

build configuration, CCS IDE displays Testcfg as the active build
configuration in myproject2.

cc=ticcs; %Create a handle for TI CCS.
visible(cc,1) %Make CCS IDE visible.
new(cc,'myproject1.pjt','project') %Create a new project.
new(cc,'myproject2.pjt') %If omitted, type defaults to 'project'.
%myproject2 is active because you created it last.

new(cc,'Testcfg','buildcfg') %Create a build config in myproject2.

activate(cc,'myproject1.pjt','project') % Make myproject1 active.
add(cc,'c6711dsk_adc.c') %Add a .c file to myproject1.
activate(cc,'c6711dsk_adc.c','text') %Activate the .c file.

See Also build, new, remove

7-3

add

Purpose (For CCS) Add files or new typedef to active project in CCS IDE

Syntax add(cc,'filename')

Description add(cc,'filename') adds a file to the active project in CCS IDE. When
you add files, CCS automatically places them under the appropriate icon
in the project view. For example, CCS IDE places .c source files under
the Source icon and places .lib library files in the Libraries icon.

Using the add function equates selecting Project > Add Files to
Project in CCS IDE.

Before using add:

• Create a handle, cc, for the CCS IDE using the ticcs command.

• Create a project, open a project, or make an existing project active in
CCS IDE using the new, open, or activate methods.

You can use the add function to include in your project any of the file
types shown in the following table.

File Types and Extensions Supported by add and CCS IDE

File Type
Extensions
Supported CCS Project Folder

C/C++ source files .c, .cpp, .cc, .ccx,
.sa

Source

Assembly source files .a*, .s* (excluding
.sa, refer to C/C++
source files)

Source

Object and library
files

.o*, .lib Libraries

Linker command file .cmd Project Name

DSP/BIOS file .tcf DSP/BIOS Config

7-4

add

Inputs add places the file specified by filename in the active project in CCS.

cc

cc is a handle for an instance of CCS IDE. Before using the add
method, create cc using the ticcs function.

filename

filename is the name of the file to add to the active CCS project.

If you supply a filename with no path or with a relative path,
Embedded IDE Link searches the CCS IDE working folder first.
It then searches the directories on your MATLAB path. Add
supported file types shown in the preceding table.

Outputs The add method assigns the type, size, and uclass of the file to
cc.type.

Examples Add files to a CCS IDE project.

cc=ticcs % Create a handle

TICCS Object:

API version : 1.2

Processor type : TMS320C64127

Processor name : CPU_1

Running? : No

Board number : 0

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

cc.new('myproject','project'); % Create a new project.

cc.add('c6711dsk_adc.c'); % Add a C source file.

See Also activate, cd, new, open, remove

7-5

address

Purpose (For CCS) Return the memory address and page value for a symbol
in CCS IDE

Syntax a = address(cc,'symbolstring', 'varscope')

Description The a = address(cc,'symbolstring', 'varscope') method returns
the memory address and page number of the first matching symbol in
the symbol table of the most recently loaded program in CCS IDE.

The most recently loaded program in CCS IDE might not be the
program loaded on the processor to which cc is linked.

Because the address method returns the address and page values as a
structure, your programs can use the values directly. For example, the
cc.read and cc.write can use a as an input.

If the address method does not find the symbol in the symbol table, it
generates a warning and returns a null value.

Inputs a

Use a as a variable to capture the return values from the address
method.

cc

cc is a handle for an instance of CCS IDE. Before using the
address method, create cc using the ticcs function.

symbolstring

symbolstring is the name of the symbol for which you are getting
the memory address and page values.

Symbol names are case-sensitive. Use the proper case when you
enter symbolstring

For address to work, symbolstring must represent a valid entry
in the symbol table.

varscope

7-6

address

Optionally, you set the scope of the address method. Enter
'local' or 'global'.

Outputs The address method returns the symbol name, memory address, and
page values for the symbol as a 1-by-2 vector. The first cell contains the
symbol name. The second cell contains the address and the memory
page.

If the address method does not find the symbol, it returns the address
as empty.

The address method only returns the first matching symbol in the
symbol table.

The return value is a cell array where each row in a presents the
symbol name and address in the table. This table shows a few possible
elements of a, and their interpretation.

a Array Element Contents of the Element

a{1} String reflecting the symbol name. If address
found a symbol that matches symbolstring,
this is the same as symbolstring. Otherwise
this is empty.

a{2}(1) Address or value of symbol entry.

a{2}(2) Memory page value. For TI’s C6000
processors, the page is 0.

Examples After you load a program to your processor, address lets you read
and write to specific entries in the symbol table for the program. For
example, the following function reads the value of symbol ’ddat’ from
the symbol table in CCS IDE.

ddatv = read(cc,address(cc,'ddat'),'double',4)

ddat is an entry in the current symbol table. address searches for the
string ddat and returns a value when it finds a match. read returns

7-7

address

ddat to MATLAB software as a double-precision value as specified by
the string ’double’.

To change values in the symbol table, use address with write:

write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

After executing this write operation, ddat contains double-precision
values for π, 12.3, e-1, and sin(π/4). Use read to verify the contents
of ddat:

ddatv = read(cc,address(cc,'ddat'),'double',4)

MATLAB software returns

ddatv =

3.1416 12.3 0.3679 0.7071

See Also load, read, symbol, write

7-8

animate

Purpose (For CCS) Run application on processor to breakpoint

Syntax animate(cc)

Description animate(cc) starts the processor application, which runs until it
encounters a breakpoint in the code. At the breakpoint, application
execution halts and CCS Debugger returns data to CCS IDE to update
all windows that are not connected to probe points. After updating the
display, the application resumes execution and runs until it encounters
another breakpoint. The run-break-resume process continues until you
stop the application from MATLAB software with the halt function or
from CCS IDE.

When you are running scripts or files in MATLAB software, you might
find that animate provides a useful way to update the CCS IDE with
information as your script or program runs.

Using animate with Multiprocessor Boards

When you use animate with a ticcs object cc that comprises more than
one processor, such as an OMAP processor, the method applies to each
processor in your cc object. This causes each processor to run a loaded
program just as it does for the single processor case.

See Also halt, restart, run

7-9

build

Purpose (For CCS) Build active project in CCS IDE

Syntax build(cc,timeout)
build(cc)
build(cc,'all',timeout)
build(cc,'all')
[result,numwarns]=build(...)

Description build(cc,timeout)incrementally rebuilds your active project in CCS
IDE. In an incremental build:

• Files that you have changed since your last project build process
get rebuilt or recompiled.

• Source files rebuild when the time stamp on the source file is later
than the time stamp on the object file created by the last build.

• Files whose time stamps have not changed do not rebuild or
recompile.

This incremental build is identical to the incremental build in CCS IDE,
available from the CCS IDE toolbar.

After building the files, CCS IDE relinks the files to create the program
file with the .out extension. To determine whether to relink the output
file, CCS IDE compares the time stamp on the output file to the time
stamp on each object file. It relinks the output when an object file time
stamp is later than the output file time stamp.

To reduce the compile and build time, CCS IDE keeps a build
information file for each project. CCS IDE uses this file to determine
which file needs to be rebuilt or relinked during the incremental build.
After each build, CCS IDE updates the build information file.

7-10

build

Note CCS IDE opens a Save As dialog box when the requested project
build overwrites any files in the project. You must respond to the dialog
box before CCS IDE continues the build. The dialog box may be hidden
by open windows on your desktop and not visible. CCS IDE, MATLAB
software, and other applications may appear to be frozen until you
respond.

To limit the time that build spends performing the build, the optional
argument timeout stops the process after timeout seconds. timeout
defines the number of seconds allowed to complete the required compile,
build, and link operation. If the build process exceeds the timeout
period, build returns an error in MATLAB software. Generally, build
causes the processor to initiate a restart even when the period specified
by timeout passes. Exceeding the allotted time for the operation
usually indicates that confirmation that the build was finished was not
received before the timeout period passed. If you omit the timeout
option in the syntax, build defaults to the global timeout defined in cc.

build(cc) is the same as build(cc,timeout) except that when you
omit the timeout option, build defaults to the timeout for build, 1000
s. This timeout value overrides the default timeout setting for cc.

build(cc,'all',timeout) completely rebuilds all of the files in
the active project. This full build is identical to selecting Project >
Rebuild All from the CCS menu bar. After rebuilding all files in the
project, build performs the link operation to create a new program file.

To limit the time that build spends performing the build, optional
argument timeout stops the process after timeout seconds. timeout
defines the number of seconds allowed to complete the required compile,
build, and link operation.

If the build process exceeds the timeout period, build returns an error
in MATLAB software. Generally, build causes the processor to initiate
a restart even when the period specified by timeout passes. Exceeding
the allotted time for the operation usually indicates that confirmation
that the build was finished was not received before the timeout period

7-11

build

passed. If you omit the timeout option in the syntax, build defaults to
the global timeout defined in cc.

build(cc,'all') is the same as build(cc,'all',timeout) except
that when you omit the timeout option, build defaults to the timeout
set for build only, 1000 s.

[result,numwarns]=build(...) returns two output values that report
the results of the build operation. For a successful build, the output
arguments are the following:

• result equal to 1 for the build

• numwarns reports the number of build warnings that occurred during
the build.

When the build is not successful, build displays an error and a message
that contains the build string in the MATLAB software Command
Window.

Examples To demonstrate building a project from MATLAB software, use CCS
IDE to load a project from the Texas Instruments software tutorials.
For this example, open the project file volume.pjt from the Tutorial
folder where you installed CCS IDE. (You can open any project you
have for this example.)

Now use build to build the project:

cc=ticcs

TICCS Object:
API version : 1.2
Processor type : TMS320C64127
Processor name : CPU_1
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

7-12

build

RTDX channels : 0

build(cc,'all',20)

You just completed a full build of the project in CCS IDE. On the Build
pane in CCS IDE, you see the record of the build process and the results.
Now, make a change to a file in the project in CCS IDE and save the
file. Then rebuild the project with an incremental build.

build(cc,20)

When you look at the Build pane in CCS IDE, the log shows that the
build only occurred on the file or files that you changed and saved.

See Also activate, isrunning, open

7-13

ccsboardinfo

Purpose (For CCS) Information about boards and simulators known to CCS IDE

Syntax ccsboardinfo
boards = ccsboardinfo

Description ccsboardinfo returns configuration information about each board
and processor installed and recognized by CCS. When you issue the
function, ccsboardinfo returns the following information about each
board or simulator.

Installed Board
Configuration Data

Configuration
Item Name Description

Board number boardnum The number that CCS assigns to the board or
simulator. Board numbering starts at 0 for
the first board. This is also a property used
when you create a new link to CCS IDE.

Board name boardname The name assigned to the board or simulator.
Usually, the name is the board model name,
such as TMS320C67xx evaluation module.
If you are using a simulator, the name tells
you which processor the simulator matches,
such as C67xx simulator. If you renamed
the board during setup, your assigned name
appears here.

7-14

ccsboardinfo

Installed Board
Configuration Data

Configuration
Item Name Description

Processor number procnum The number assigned by CCS to the
processor on the board or simulator. When
the board contains more than one processor,
CCS assigns a number to each processor,
numbering from 0 for the first processor on
the first board. For example, when you have
two recognized boards, and the second has
two processors, the first processor on the
first board is procnum=0, and the first and
second processors on the second board are
procnum=1 and procnum=2. This is also a
property used when you create a new link
to CCS IDE.

Processor name procname Provides the name of the processor. Usually
the name is CPU, unless you assign a
different name.

Processor type proctype Gives the processor model, such as
TMS320C6x1x for the C6xxx series
processors.

Each row in the table that you see displayed represents one digital
signal processor, either on a board or simulator. As a consequence,
you use the information in the table in the function ticcs to identify a
selected board in your PC.

boards = ccsboardinfo returns the configuration information about
your installed boards in a slightly different manner. Rather than
returning the table containing the information, you get a listing of
the board names and numbers, where each board has an associated
structure named proc that contains the information about each
processor on the board. For example

boards = ccsboardinfo

7-15

ccsboardinfo

returns

boards =

name: 'C6xxx Simulator (Texas Instruments)'

number: 0

proc: [1x1 struct]

where the structure proc contains the processor information for the
C6xxx simulator board:

boards.proc

ans =

name: 'CPU'

number: 0

type: 'TMS320C6200'

Reviewing the output from both function syntaxes shows that the
configuration information is the same.

When you combine this syntax with the dot notation used to access the
elements in a structure, the result is a way to determine which board to
connect to when you construct a link to CCS IDE. For example, when
you are creating a link to a board in your PC, the dot notation provides
the means to set the board by issuing the command with the boardnum
and procnum properties set to the entries in the structure boards. For
example, when you enter

boards = ccsboardinfo;

boards(1).name returns the name of your second installed board and
boards(1).proc(2).name returns the name of the second processor on
the second board. To create a link to the second processor on the second
board, use

cc = ticcs('boardnum',boards(1).number,'procnum',...

7-16

ccsboardinfo

boards(1).proc(2).name);

Examples On a PC with both a simulator and a DSP Starter Kit (DSK) board
installed,

ccsboardinfo

returns something similar to the following table. Your display
may differ slightly based on what you called your boards when you
configured them in CCS Setup Utility:

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ---------------

1 C6xxx Simulator (Texas Instrum ..0 CPU TMS320C6200

0 DSK (Texas Instruments) 0 CPU_3 TMS320C6x1x

When you have one or more boards that have multiple CPUs,
ccsboardinfo returns the following table, or one similar to it:

Board Board Proc Processor Processor

Num Name Num Name Type

-- ---------------------------------- --- -------------------

2 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6200

1 C6xxx EVM (Texas Instrum ... 1 CPU_Primary TMS320C6200

1 C6xxx EVM (Texas Instrum ... 0 CPU_Secondary TMS320C6200

0 C64xx Simulator (Texas Instru...0 CPU TMS320C64xx

In this example, board number 1 returns two defined CPUs:
CPU_Primary and CPU_Secondary. The C6xxx does not in fact have two
CPUs; a second CPU is defined for this example.

To demonstrate the syntax boards = ccsboardinfo, this example
assumes a PC with two boards installed, one of which has three CPUs.

Enter

ccsboardinfo

7-17

ccsboardinfo

at the MATLAB desktop prompt. You get

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ------------

1 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6211

0 C6211 DSK (Texas Instruments) 2 CPU_3 TMS320C6x1x

0 C6211 DSK (Texas Instruments) 1 CPU_4_1 TMS320C6x1x

0 C6211 DSK (Texas Instruments) 0 CPU_4_2 TMS320C6x1x

Now enter

boards = ccsboardinfo

MATLAB software returns

boards=
2x1 struct array with fields

name
number
proc

showing that you have two boards in your PC.

Use the dot notation to determine the names of the boards:

boards.name

returns

ans=
C6xxx Simulator (Texas Instruments)

ans=
C6211 DSK (Texas Instruments)

To identify the processors on each board, again use the dot notation to
access the processor information. You have two boards (numbered 0 and

7-18

ccsboardinfo

1). Board 0 has three CPUs defined for it. To determine the type of the
second processor on board 0 (the board whose boardnum = 0), enter

boards(2).proc(1)

which returns

ans=
name: 'CPU_3'
number: 1
type: 'TMS320C6x1x'

Recall that

boards(2).proc

gives you this information about the board

ans=
3x1 struct array with fields:

name
number
type

indicating that this board has three processors (the 3x1 array).

The dot notation is useful for accessing the contents of a structure when
you create a link to CCS IDE. When you use ticcs to create your CCS
link, you can use the dot notation to tell CCS IDE which processor
you are using.

cc = ticcs('boardnum',boards(1).proc(1))

See Also info, ticcs

7-19

cd

Purpose (For CCS) Change CCS IDE working folder

Syntax cd(cc,'directory')
wd = cd(cc,'directory')
cd(cc,pwd)

Description cd(cc,'directory') changes the CCS IDE working directory to the
directory identified by the string directory. For the change to take
effect, directory must refer to an existing directory. You can give the
directory string either as a relative path name or an absolute path
name including the drive letter. CCS IDE applies relative path names
from the current working directory.

wd = cd(cc,'directory') returns the current CCS IDE working
directory in wd.

Using cc to change the CCS IDE working directory does not affect your
MATLAB environment working directory or any MATLAB environment
paths. Use the following function syntax to set your CCS IDE working
directory to match your MATLAB environment working directory.

cd(cc,pwd) where pwd calls the MATLAB function pwd that shows your
present MATLAB working directory and changes your current CCS IDE
working directory to match the path name returned by pwd.

Examples When you open a project in CCS IDE, the folder containing the project
becomes the current working folder in CCS IDE. Try opening the
tutorial project volume.mak in CCS IDE. volume.mak is in the tutorial
files from CCS IDE. When you check the working directory for CCS IDE
in the MATLAB environment, you see something like the following
result

wd=cd(cc)

wd =

D:\ticcs\c6000\tutorial\volume1

7-20

cd

where the drive letter D may be different based on where you installed
CCS IDE.

Now check your MATLAB environment working directory:

pwd

ans =

J:\bin\win32

Your CCS IDE and MATLAB environment working directories are not
the same. To make the directories the same, use the cd(cc,pwd) syntax:

cd(cc,pwd) % Set CCS IDE to use your MATLAB working directory.

pwd % Check your MATLAB working directory.

ans =

J:\bin\win32

cd(cc) % Check your CCS IDE working directory.

ans =

J:\bin\win32

You have set CCS IDE and MATLAB environment to use the same
working directory.

See Also dir, load, open

7-21

close

Purpose (For CCS) Close CCS IDE files or RTDX channel

Note close(cc,'filename','text') produces an error.
Support for close(rx,...) on C5000 and C6000 processors will be
removed in a future version.

Syntax close(cc,'filename','type')
close(rx,'channel1','channel2',...)
close(rx,'channel')

Description close(cc,'filename','type') closes the file in CCS IDE identified by
filename of type ’type’. type identifies the type of file to close. This can
be either project files when you use ’project' for the type option, or
text files when you use 'text' for the type option. To close a specific
file in CCS IDE, filename must match exactly the name of the file
to close. If you replace filename with 'all', close terminates every
open file whose type matches the type option. File types recognized by
close include these extensions.

type String Affected files

'project' Project files with the .pjt extension.

'text' All files with these extensions —.a*, .c, .cc,
.ccx, .tcf, .cmd, .cpp, .lib, .o*, .rcp, and .s*.
Note that 'text' does not close .cfg files.

When you replace filename with the null entry [], close shuts the
current active file window in CCS IDE. When you specify ’project' for
the type option, it closes the active project.

Note close does not save files before shutting them. Closing files can
result in lost data if you have changed the files after you last saved
them. Use save to preserve your changes before you close files.

7-22

close

close(rx,'channel1','channel2',...) closes the channels specified
by the strings channel1, channel2, and so on as defined in rx.

close(rx,'channel') closes the specified channel. When you set
channel to 'all', this function closes all the open channels associated
with rx.

To avoid conflicts, do not name channels “all” or “ALL.”

Examples Using close with Files and Projects

To clarify the different close options, here are six commands that close
open files or projects in CCS IDE.

Command Result

close(cc,'all','project') Close all open projects in
CCS IDE.

close(cc,'my.pjt','project') Close the project my.pjt.

close(cc,[],'project') Close the active project.

close(cc,'all','text') Close all open text files.
This includes source file,
libraries, command files,
and others.

close(cc,'my_source.cpp','text') Close the text file
my_source.cpp.

close(cc,[],'text') Close the active file
window.

Using close with RTDX

When you plan to use RTDX to communicate with a processor, you
open and enable channels to the board and processor. For example, to
communicate with the processor on your installed board, you use open
to set up a channel, as follows:

cc = ticcs('boardnum',1,'procnum',0)

7-23

close

rx=cc.rtdx % Create an alias to the RTDX portion of this link.

open(rx,'ichan','w') % Open a channel for write access.

enable(rx,'ichan') % Enable the open channel for use.

After you finish using the open channel, you must close it to avoid
difficulties later on.

close(rx,'ichan')

Or to close all open channels, you could use

close(rx,'all')

See Also disable, open

7-24

configure

Purpose (For CCS) Define size and number of RTDX channel buffers

Note configure produces a warning on C5000 and C6000 processors
and will be removed in a future version.

Syntax configure(rx,length,num)

Description configure(rx,length,num) sets the size of each main (host) buffer,
and the number of buffers associated with rx. Input argument length
is the size in bytes of each channel buffer and num is the number of
channel buffers to create.

Main buffers must be at least 1024 bytes, with the maximum defined
by the largest message. On 16-bit processors, the main buffer must be
four bytes larger than the largest message. On 32-bit processors, set
the buffer to be eight bytes larger that the largest message. By default,
configure creates four, 1024-byte buffers. Independent of the value of
num, CCS IDE allocates one buffer for each processor.

Use CCS to check the number of buffers and the length of each one.

Examples Create a default link to CCS and configure six main buffers of 4096
bytes each for the link.

cc=ticcs % Create the CCS link with default values.

TICCS Object:

API version : 1.0

Processor type : C67

Processor name : CPU

Running? : No

Board number : 0

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

7-25

configure

rx=cc.rtdx % Create an alias to the rtdx portion.

RTDX channels : 0

configure(rx,4096,6) % Use the alias rx to configure the length

% and number of buffers.

After you configure the buffers, use the RTDX tools in CCS IDE to
verify the buffers.

See Also readmat, readmsg, write, writemsg

7-26

datatypemanager

Purpose (For CCS) Open Data Type Manager

datatypemanager produces a warning and will be removed in a future
version.

Syntax datatypemanager(cc)
cc2 = datatypemanager(cc)

Description datatypemanager(cc) opens the Data Type Manager (DTM) with data
type information about the project to which cc refers. With the type
manager open, you can add type definitions (typedefs) from your project
to MATLAB software so it can interpret them. You add your typedefs
because MATLAB software cannot determine or understand typedefs in
your function prototypes remotely across the interface to CCS.

Each custom type definition in your prototype must appear on the
Typedef name (Equivalent data type) list before you can use the
typedef from MATLAB software with a function object.

When the DTM opens, a variety of information and options displays in
the Data Type Manager dialog box:

• Typedef name (Equivalent data type)— provides a list of default
data types. When you create a typedef, it appears added to this list.

• Add typedef— opens the Add Typedef dialog box so you can add
one or more typedefs to your project. Your added typedef appears on
the Typedef name (Equivalent data type) list. Also, when you
pass the cc object to the DTM, and then add a typedef, the command

cc.type

returns a list of the data types in the object including the typedefs
you added.

• Remove typedef — removes a selected typedef from the Typedef
name (Equivalent data type) list.

• Load session— loads a previously saved session so you can use the
typedefs you defined earlier without reentering them.

7-27

datatypemanager

• Refresh list — updates the list in Typedef name (Equivalent
data type). Refreshing the list ensures the contents are current. If
you changed your project data type content or loaded a new project,
this updates the type definitions in the DTM.

• Close — closes the DTM and prompts you to save the session
information. This is the only way to save your work in this dialog
box. Saving the session creates an M-file you can reload into the
DTM later.

Clicking Close in the DTM prompts you to save your session.
Saving the session creates an M-file that contains operations that
create your final list of data types, identical to the data types in the
Typedef name list.

In the stored M-file, you find a function that includes the add and
remove operations you used to create the list of data types in the
DTM. For each time you added a typedef in the DTM, the M-file
contains an add command that adds the new type definition to the
cc.type property of the object. When you remove a data type, you
see an equivalent clear command that removes a data type from
the cc.type object.

Note All operations that add and remove data types in the DTM
during a session are stored in the generated M-file, including
mistakes you make while creating or removing type definitions.
When you load your saved session into the DTM, you see the same
error messages you saw during the session. Keep in mind that you
have already corrected these errors.

The first line of the M-file is a function definition, where the name of
the function is the filename of the session you saved.

cc2 = datatypemanager(cc) returns the cc2 ticcs object while it opens
the DTM. cc2 represents an alias to cc. Objects cc and cc2 are not

7-28

datatypemanager

independent objects. When you change a property of either cc or cc2,
the corresponding property in the other object changes as well.

Data Type Manager

When you create objects that access functions in a project, MATLAB
software can recognize most data types that you use in your project.
However, if the functions use one or more custom type definitions,
MATLAB software cannot recognize the data type and cannot work
with the function. To overcome this problem, the Data Type Manager
provides the capability to define your typedefs to MATLAB software.

Entering

datatypemanager(cc)

at the MATLAB prompt opens the DTM.

7-29

datatypemanager

Before you add a type definition, the Typedef name (Equivalent data
type) list shows a number of data types already defined:

• Void(void)— void return argument for a function

• Float(float)— float data type used in a function input or return
argument

• Double(double) — double data type used in a function input or
return argument

• Long(long) — long data type used in a function input or return
argument

• Int(int) — int data type used in a function input or return
argument

7-30

datatypemanager

• Short(short)— short data type used in a function input or return
argument

• Char(char)— character data type used in a function input or return
argument

The lowercase versions of the data types appear because MATLAB
software does not recognize the initial capital versions automatically. In
the data type entry, the project data type with the initial capital letter
is mapped to the lowercase MATLAB software data type.

Although not recommended, you can use mixed case typedef names, so
long as the equivalent data type uses lowercase. In particular, typedefs
that refer to other typedefs should resolve to a data type in lowercase.

Adding a type definition adds the new data type to the list of typedefs.

Remove any existing or new type definitions with the Remove typedef
option.

7-31

datatypemanager

Add Typedef Dialog Box

Clicking Add typedef in the DTM opens the List of Known Data
Types dialog box. As shown in this figure, you add your custom type
definitions here.

When you have used custom type definitions in your program or project,
you must specify what they mean to MATLAB software. The Typedef
option lets you enter the name of the typedef in your program and
select an equivalent type from the Known Types list. By defining
your type definitions in this dialog box, you enable MATLAB software
to understand and work with them. For example, when you return
the data to the MATLAB workspace or send data from the workspace
to your project.

After you define each typedef, the Equivalent type option shows you
the type you specified for each type definition, either when you enter it
in the Typedef field or select it from the Known Types list.

7-32

datatypemanager

Options in this dialog box let you review the data types you are using
or that are available in your projects. By selecting different data type
categories from the Known Types list, you can see all of the supported
data types.

From the list of known data types, choose one of the following data
type categories:

• MATLAB Types

Data Type Description

int8 8-bit integer data

uint8 Unsigned 8-bit integer data

int16 16-bit integer data

uint16 Unsigned 16-bit integer data

int32 32-bit integer data

7-33

datatypemanager

Data Type Description

uint32 Unsigned 32-bit integer data

int64 64-bit integer data

uint64 Unsigned 64-bit integer data

single 32-bit IEEE® floating-point data

double 64-bit IEEE floating-point data

• TI C Types

Data Type Description (For C6000 Compiler)

char 8-bit character data with a sign bit

unsigned char 8-bit character data

signed char 8-bit character data

short 16-bit numeric data

unsigned short Unsigned 16-bit numeric data

signed short 16-bit numeric data with sign designation

int 32-bit integer numeric data

unsigned int 32-bit integer numerics without sign
information

signed int 32-bit integer numerics with sign
information

long 40-bit data with sign bit. Note that this is
not the same as int.

unsigned long 40-bit data without information about the
sign of the number

signed long 40-bit data without information about the
sign of the number represented

float 32-bit numeric data

7-34

datatypemanager

Data Type Description (For C6000 Compiler)

double 64-bit numeric data

long double On the C2000 and C5000 processors –
32-bit IEEE floating-point data

On the C6000 processors – 64-bit IEEE
floating-point data

Numbers of bits change depending on the processor and compiler.
For more information about Texas Instruments data types and
specific processors or compilers, refer to your compiler documentation
from Texas Instruments processors.

• TI Fixed-Point Types

Data Type Description

Q0.15 Numeric data with 16-bit word length and
15-bit fraction length

Q0.31 32-bit word length numeric data with fraction
length of 31 bits

• Struct, Union, Enum types

If the program you load on the processor includes one or more of
struct, union, or enum data types, the type definitions show up on
this list. Until you load a program on the processor, this list is empty
and trying to access the list generates an error message.

Load a program, if you have not already done so, by clicking Load
CCS Program and selecting a .out file to load on your processor.

• When the load process works, you see the name of the file you loaded
in Loaded program. Otherwise you get an error message that the
load failed.

Only programs that you load from this dialog box appear in Program
loaded. Programs that you already loaded on your processor do not

7-35

datatypemanager

appear in the Loaded program option. MATLAB software cannot
determine what program you have loaded.

• Others such as pointers and typedefs

Like struct, union, and enum data types, the Others list is empty
until you define one or more typedefs. Unlike the Struct, Union,
Enum types list, loading a program does not populate this list with
typedefs from the program. You must define them explicitly in this
dialog box.

Custom type definitions can refer to other typedefs in your project.
Nesting typedefs works after you have define the necessary custom
types. To create a typedef that uses another typedef, define the nested
(inner) definition, and then define the outer definition as a pointer to
the nested definition. Refer to Examples to see this in operation.

Program loaded — tells you the name of the program loaded on
the processor, if you loaded the program from this dialog box. If not,
Program loaded does not report the program name.

Load CCS Program — opens the Load Program dialog box so you
can select and load a .out file to your processor.

Examples This set of examples show how to create custom type definitions with
the DTM. Each example shows the List of Known Data Types dialog
box with the selections or entries needed to create the typedef.

Start the examples by creating a ticcs object:

cc=ticcs;

Now start the DTM with the cc object. So far you have not loaded a
file on the processor.

datatypemanager(cc);

With the DTM open, you can create a few custom data types.

7-36

datatypemanager

First Example

Create a typedef (typedef1) that uses a MATLAB software data type.
typedef1 uses the equivalent data type uint32.

7-37

datatypemanager

Second Example

Create a second typedef (typedef2) that uses one of the TI C data
types. Define typedef2 to use the signed long data type.

7-38

datatypemanager

Third Example

Create a typedef (typedef3) that refers to another typedef (typedef2).
Call this a nested typedef.

Notice that the referenced typedef, typedef2, is entered as a pointer
(indicated by the added asterisk). Using the pointer form lets MATLAB
software recognize the data type that typedef2 represents. If you do
not use the pointer, MATLAB software converts typedef3 to a default
value equivalent data type, in this case, int.

7-39

datatypemanager

The next figure shows typedef4 created to use typedef2 rather than
typedef2* for a nested typedef. Under Equivalent type, typedef4
has an equivalent data type of typedef2, as specified. But, when you
look at the list of known data types in the Data Type Manager dialog
box, you see that typedef4 maps to int, not typedef2, or eventually
signed long.

Here is the DTM after you create all the example custom data types.
Take note of typedef4 in this listing. You see typedef4 defaults to an
equivalent data type int, where typedef3, also a nested type definition,
retains the equivalent data type you assigned. Now you are ready
to use a function that includes your custom type definitions in your
hardware-in-the-loop development work.

7-40

datatypemanager

7-41

dir

Purpose (For CCS) List files in current CCS IDE working directory

Syntax dir(cc)

Description dir(cc) lists the files and directories in the current CCS IDE working
directory. This does not reflect your MATLAB software working
directory or change the working directory.

Use cd to change your CCS IDE working directory.

See Also cd, open

7-42

disable

Purpose (For CCS) Disable RTDX interface, specified channel, or all RTDX
channels

Note Support for disable on C5000 and C6000 processors will be
removed in a future version.

Syntax disable(rx,'channel')
disable(rx,'all')
disable(rx)

Description disable(rx,'channel') disables the open channel specified by the
string channel, for rx. Input argument rx represents the RTDX portion
of the associated link to CCS IDE.

disable(rx,'all') disables all the open channels associated with rx.

disable(rx) disables the RTDX interface for rx.

Important Requirements for Using disable

On the processor side, disable depends on RTDX to disable channels
or the interface. You must meet the following requirements to use
disable:

1 The processor must be running a program.

2 You enabled the RTDX interface.

3 Your processor program polls periodically.

Examples When you have opened and used channels to communicate with a
processor, you should disable the channels and RTDX before ending
your session. Use disable to switch off open channels and disable
RTDX, as follows:

disable(cc.rtdx,'all') % Disable all open RTDX channels.
disable(cc.rtdx) % Disable RTDX interface.

7-43

disable

See Also close, enable, open

7-44

display

Purpose (For CCS) Display properties of object that refers to CCS IDE or RTDX
link

Note display(rx) produces a warning on C5000 and C6000 processors
and will be removed in a future version.

Syntax display(cc)
display(rx)
display(objectname)
display(cc.type)

Description This function is similar to omitting the closing semicolon from an
expression on the command line, except that display does not
display the variable name. display provides a formatted list of the
property names and property values for a ticcs object. To return the
configuration data, display calls the function disp. To return a list of
object properties, listed by the actual property names, use get with
the object.

display(cc) returns the information about the cc object, listing the
properties and values assigned to cc.

display(rx) returns the information about the rtdx object that is part
of a cc object, listing the properties and values assigned to cc.rtdx.

display(objectname) returns the properties and property values for
objectname. This syntax supports all objects except cc, rtdx, and
cc.type.

display(cc.type) returns the properties and property values for the
cc.type object. Note that the properties associate with the cc object.

The following example illustrates the default display for a link to CCS
IDE:

cc = ticcs;

7-45

display

display(cc)
TICCS Object:

API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Using display with Multiprocessor Hardware

To support boards that contain more than one processor, display
behaves slightly differently when cc accesses multiprocessor boards.

The syntax

display(cc)

returns information about all of the members of the object. When the
processor has multiple processors, the information returned includes
the details of all of the available processors on the processor.

Examples Try this example to see the display for an RTDX link to a processor:

cc = ticcs;
rx=(cc.rtdx) % Assign the RTDX portion of cc to rx.

RTDX channels : 0

display(rx)

RTDX channels : 0

7-46

enable

Purpose (For CCS) Enable RTDX interface, specified channel, or all RTDX
channels

Note Support for enable on C5000 and C6000 processors will be
removed in a future version.

Syntax enable(rx,'channel')
enable(rx,'all')
enable(rx)

Description enable(rx,'channel') enables the open channel specified by the
string channel, for RTDX link rx. The input argument rx represents
the RTDX portion of the associated link to CCS IDE.

enable(rx,'all') enables all the open channels associated with rx.

enable(rx) enables the RTDX interface for rx.

Important Requirements for Using enable

On the processor side, enable depends on RTDX to enable channels.
You must meet the following requirements to use enable:

1 The processor must be running a program when you enable the
RTDX interface. When the processor is not running, the state
defaults to disabled.

2 You must enable the RTDX interface before you enable individual
channels.

3 Channels must be open.

4 Your processor program must poll periodically.

5 Using code in the program running on the processor to enable
channels overrides the default disabled state of the channels.

7-47

enable

Examples To use channels to RTDX, you must both open and enable the channels:

cc = ticcs; % Create a new connection to the IDE.

enable(cc.rtdx) % Enable the RTDX interface.

open(cc.rtdx,'inputchannel','w') % Open a channel for sending

% data to the processor.

enable(cc.rtdx,'inputchannel') % Enable the channel so you can use

% it.

See Also disable, open

7-48

flush

Purpose (For CCS) Flush data or messages from specified RTDX channels

Note flush support C5000 and C6000 processors will be removed in a
future version.

Syntax flush(rx,channel,num,timeout)
flush(rx,channel,num)
flush(rx,channel,[],timeout)
flush(rx,channel)
flush(rx,'all')

Description flush(rx,channel,num,timeout) removes num oldest data messages
from the RTDX channel queue specified by channel in rx. To determine
how long to wait for the function to complete, flush uses timeout (in
seconds) rather than the global timeout period stored in rx. flush
applies the timeout processing when it flushes the last message in the
channel queue, because the flush function performs a read to advance
the read pointer past the last message. Use this calling syntax only
when you specify a channel configured for read access.

flush(rx,channel,num) removes the num oldest messages from the
RTDX channel queue in rx specified by the string channel. flush uses
the global timeout period stored in rx to determine how long to wait
for the process to complete. Compare this to the previous syntax that
specifies the timeout period. Use this calling syntax only when you
specify a channel configured for read access.

flush(rx,channel,[],timeout) removes all data messages from the
RTDX channel queue specified by channel in rx. To determine how long
to wait for the function to complete, flush uses timeout (in seconds)
rather than the global timeout period stored in rx. flush applies the
timeout processing when it flushes the last message in the channel
queue, because flush performs a read to advance the read pointer
past the last message. Use this calling syntax only when you specify a
channel configured for read access.

7-49

flush

flush(rx,channel) removes all pending data messages from the
RTDX channel queue specified by channel in rx. Unlike the preceding
syntax options, you use this statement to remove messages for both
read-configured and write-configured channels.

flush(rx,'all') removes all data messages from all RTDX channel
queues.

When you use flush with a write-configured RTDX channel, Embedded
IDE Link sends all the messages in the write queue to the processor.
For read-configured channels, flush removes one or more messages
from the queue depending on the input argument num you supply and
disposes of them.

Examples To demonstrate flush, this example writes data to the processor over
the input channel, then uses flush to remove a message from the read
queue for the output channel:

cc = ticcs;
rx = cc.rtdx;
open(rx,'ichan','w');
enable(rx,'ichan');
open(rx,'ochan','r');
enable(rx,'ochan');
indata = 1:10;
writemsg(rx,'ichan',int16(indata));
flush(rx,'ochan',1);

Now flush the remaining messages from the read channel:

flush(rx,'ochan','all');

See Also enable, open

7-50

halt

Purpose (For CCS) Terminate execution of process running on processor

Syntax halt(cc,timeout)
halt(cc)

Description halt(cc,timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running. To resume processing after you halt the processor, use run.
Also, the read(cc,'pc') function can determine the memory address
where the processor stopped after you use halt.

timeout defines the maximum time the routine waits for the processor
to stop. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

halt(cc) immediately stops program execution by the processor. After
the processor stops, halt returns to the host. In this syntax, the
timeout period defaults to the global timeout period specified in cc. Use
get(cc) to determine the global timeout period.

Using halt with Multiprocessor Boards

When you issue a halt from the command line, it applies to every
processor that the cc object represents. Thus halt stops every running
processor for the object.

Examples Use one of the provided demonstration programs to show how halt
works. From the CCS IDE demonstration programs, load and run
volume.out.

At the MATLAB software prompt create a link to CCS IDE

cc = ticcs

Check whether the program volume.out is running on the processor.

isrunning(cc)

7-51

halt

ans =

1

cc.isrunning % Alternate syntax for checking the run status.

ans =

1

halt(cc) % Stop the running application on the processor.

isrunning(cc)

ans =

0

Issuing the halt stopped the process on the processor. Checking in CCS
IDE shows that the process has stopped.

See Also ticcs, isrunning, run

7-52

info

Purpose (For CCS) Information about processor

Note Support for info(rx) on C5000 and C6000 processors will be
removed in a future version.

Syntax info = info(cc)
info = info(rx)

Description info = info(cc) returns the property names and property values
associated with the processor accessed by cc. info is a structure
containing the following information elements and values:

Structure Element Data Type Description

info.procname String Processor name as defined in the CCS setup utility.
In multiprocessor systems, this name reflects the
specific processor associated with cc.

info.isbigendian Boolean Value describing the byte ordering used by the
processor. When the processor is big-endian, this
value is 1. Little-endian processors return 0.

info.family Integer Three-digit integer that identifies the processor
family, ranging from 000 to 999. For example, 320
for Texas Instruments digital signal processors.

7-53

info

Structure Element Data Type Description

info.subfamily Decimal Decimal representation of the hexadecimal
identification value that TI assigns to the processor
to identify the processor subfamily. IDs range
from 0x000 to 0x3822. Use dec2hex to convert the
value in info.subfamily to standard notation. For
example

dec2hex(info.subfamily)

produces ’67’ when the processor is a member of the
67xx processor family.

info.timeout Integer Default timeout value MATLAB software uses when
transferring data to and from CCS. All functions that
use a timeout value have an optional timeout input
argument. When you omit the optional argument,
MATLAB software uses this default value – 10s.

info = info(rx) returns info as a cell arraying containing the names
of your open RTDX channels.

Using info with Multiprocessor Boards

Method info works with processors that have more than one processor
by returning the information for each processor accessed by the cc
object you created with ticcs. The structure of information returned is
identical to the single processor case, for every included processor.

Examples On a PC with a simulator configured in CCS IDE, info returns the
configuration for the processor being simulated:

info(cc)

ans =

procname: 'CPU'
isbigendian: 0

7-54

info

family: 320
subfamily: 103

timeout: 10

This example simulates the TMS320C6211 processor running in
little-endian mode. When you use CCS Setup Utility to change the
processor from little-endian to big-endian, info shows the change.

info(cc)

ans =

procname: 'CPU'
isbigendian: 1

family: 320
subfamily: 103

timeout: 10

If you have two open channels, chan1 and chan2,

info = info(rx)

returns

info =
'chan1'
'chan2'

where info is a cell array. You can dereference the entries in info
to manipulate the channels. For example, you can close a channel by
dereferencing the channel in info in the close function syntax.

close(rx.info{1,1})

See Also ticcs, dec2hex

7-55

insert

Purpose (For CCS) Add debug point to source file or address in CCS

Syntax insert(cc,addr,'type')
insert(cc,addr,'type',timeout)
insert(cc,length)
insert(cc,filename,line,'type')
insert(cc,filename,line,'type',timeout)
insert(cc,filename,line)

Description insert(cc,addr,'type') adds a debug point located at the memory
address identified by addr for your processor digital signal processor.
The link cc identifies which processor has the debug point to insert.
CCS provides several types of debug points specified by type. Options
for type include the following strings to define Breakpoints, Probe
Points, and Profile points:

• 'break' — add a breakpoint. It defines a point at which program
execution stops.

• '' — same as 'break'.

• 'probe' — add a Probe Point that updates a CCS window during
program execution. When CCS connects your probe point to a
window, the window gets updated only when the executing program
reaches the Probe Point.

• 'profile' — add a point in an executing program at which CCS
gathers statistics about events that occurred after encountering the
previous profile point, or from the start of your program.

When you use it, insert operates in blocking mode, meaning that
after you issue the insert command, you do not regain control in
the MATLAB environment until the insert breakpoint operation is
completed successfully—you are blocked from further processing.
insert waits for the period defined by either timeout or cc.timeout. If
the insert operation does not get completed within the specified time
period, insert returns an error and control.

7-56

insert

When you use the line input argument to insert a breakpoint on a
specified line, line must represent a valid line. If line does not specify
a valid line, insert returns an error and does not insert the breakpoint.

Enter addr as a hexadecimal address, not as a ANSI C function name,
valid ANSI C expression, or a symbol name.

To learn more about the behavior of the various debugging points refer
to your CCS documentation.

insert(cc,addr,'type',timeout)adds the optional input parameter
timeout that determines how long Embedded IDE Link waits for a
response to a request to insert a breakpoint. If the response is not
received before the timeout period expires, the insertion process fails
with a timeout error. Adding the timeout input argument is valid only
when you are inserting a breakpoint. When you omit the timeout
argument, insert uses the default value defined by cc.timeout

insert(cc,length) is the same as the previous syntax except the type
string defaults to ’break’ for inserting a Breakpoint.

insert(cc,filename,line,'type') lets you specify the line where you
are inserting the debug point. line, in decimal notation, specifies the
line number in filename in CCS where you are adding the debug point.

To identify the source file, filename contains the name of the file in
CCS, entered as a string in single quotation marks. Do not include
the path to the file. insert ignores the file path information if you
add it to filename.type accepts one of three strings—break, probe, or
profile—as defined previously.

When the line or file you specified does not exist, Embedded IDE Link
returns an error explaining that it could not insert the debug point.

insert(cc,filename,line,'type',timeout)adds the optional input
parameter timeout that determines how long Embedded IDE Link
waits for a response to a request to insert a breakpoint. If the response
is not received before the timeout period expires, the insertion process
fails with a timeout error. Adding the timeout input argument is valid
only when you are inserting a breakpoint. When you omit the timeout

7-57

insert

insert(cc,filename,line) defaults to type 'break' to insert a
breakpoint.

Example Open a project in CCS IDE, such as volume.pjt in the tutorial folder
where you installed CCS IDE. Use Embedded IDE Link functions to
open the project and activate the appropriate source file where you add
the breakpoint. Remember to load the program file volume.out so you
can access symbols and their addresses.

cd (cc,'c:\ti\tutorial\sim62xx\volume1') % Default install;
wd=cd(cc);

wd =

c:\ti\tutorial\sim62xx\volume1

open(cc,'volume.pjt');

build(cc, 30);

Now add a breakpoint and a probe point.

insert(cc,15424,'break') % Adds a breakpoint at symbol "main"

insert(cc,'volume.c',47,'probe') % Adds a probe point on line 47

Switch to CCS IDE and open volume.c. Note the blue diamond and red
circle in the left margin of the volume.c listing. Red circles indicate
Breakpoints and blue diamonds indicate Probe Points.

Use symbol to return a structure listing the symbols and their addresses
for the current program file. symbol returns a structure that contains
all the symbols. To display all the symbols with addresses, use a loop
construct like the following:

for k=1:length(s),disp(k),disp(s(k)),end

where structure s holds the symbols and addresses.

7-58

insert

See Also address, remove, run

7-59

isenabled

Purpose (For CCS) Determine whether RTDX link is enabled for communications

Note Support for isenabled on C5000 and C6000 processors will be
removed in a future version.

Syntax isenabled(rx,'channel')
isenabled(rx)

Description isenabled(rx,'channel') returns ans=1 when the RTDX channel
specified by string ’channel’ is enabled for read or write communications.
When 'channel' has not been enabled, isenabled returns ans=0.

isenabled(rx) returns ans=1 when RTDX has been enabled,
independent of any channel. When you have not enabled RTDX you
get ans=0 back.

Important Requirements for Using isenabled

On the processor side, isenabled depends on RTDX to determine and
report the RTDX status. Therefore the you must meet the following
requirements to use isenabled.

1 The processor must be running a program when you query the RTDX
interface.

2 You must enable the RTDX interface before you check the status of
individual channels or the interface.

3 Your processor program must be polling periodically for isenabled
to work.

Note For isenabled to return reliable results, your processor must
be running a loaded program. When the processor is not running,
isenabled returns a status that may not represent the true state of the
channels or RTDX.

7-60

isenabled

Examples With a program loaded on your processor, you can determine whether
RTDX channels are ready for use. Restart your program to be sure it is
running. The processor must be running for isenabled to work, as well
as for enabled to work. This example creates a ticcs object cc to begin.

cc.restart
cc.run('run');
cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')

MATLAB software returns 1 indicating that your channel 'ichan' is
enabled for RTDX communications. To determine the mode for the
channel, use cc.rtdxto display the properties of object cc.rtdx.

See Also clear, disable, enable

7-61

isreadable

Purpose (For CCS) Determine whether MATLAB software can read specified
memory block

Note Support for isreadable(rx,'channel') on C5000 and C6000
processors will be removed in a future version.

Syntax isreadable(cc,address,'datatype',count)
isreadable(cc,address,'datatype')
isreadable(rx,'channel')

Description isreadable(cc,address,'datatype',count) returns 1 if the processor
referred to by cc can read the memory block defined by the address,
count, and datatype input arguments. When the processor cannot
read any portion of the specified memory block, isreadable returns 0.
You use the same memory block specification for this function as you
use for the read function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to be read. datatype
defines the format of data stored in the memory block. isreadable
uses the datatype string to determine the number of bytes to read per
stored value. For details about each input parameter, read the following
descriptions.

address — isreadable uses address to define the beginning of the
memory block to read. You provide values for address as either decimal
or hexadecimal representations of a memory location in the processor.
The full address at a memory location consists of two parts: the offset
and the memory page, entered as a vector [location, page], a string,
or a decimal value.

When the processor has only one memory page, as is true for many
digital signal processors, the page portion of the memory address is 0.
By default, ticcs sets the page to 0 at creation if you omit the page
property as an input argument. For processors that have one memory

7-62

isreadable

page, setting the page value to 0 lets you specify all memory locations in
the processor using the memory location without the page value.

Examples of Address Property Values

Property
Value Address Type Interpretation

’1F’ String Location is 31 decimal on the
page referred to by cc.page

10 Decimal Address is 10 decimal on the
page referred to by cc.page

[18,1] Vector Address location 10 decimal on
memory page 1 (cc.page = 1)

To specify the address in hexadecimal format, enter the address
property value as a string. isreadable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. Note that
when you use the string option to enter the address as a hex value, you
cannot specify the memory page. For string input, the memory page
defaults to the page specified by cc.page.

count— a numeric scalar or vector that defines the number of datatype
values to test for being readable. To assure parallel structure with
read, count can be a vector to define multidimensional data blocks.
This function always tests a block of data whose size is the product of
the dimensions of the input vector.

datatype — a string that represents a MATLAB software data type.
The total memory block size is derived from the value of count and the
datatype you specify. datatype determines how many bytes to check
for each memory value. isreadable supports the following data types:

7-63

isreadable

datatype
String

Number
of
Bytes/Value Description

'double' 8 Double-precision floating point
values

'int8' 1 Signed 8-bit integers

'int16' 2 Signed 16-bit integers

'int32' 4 Signed 32-bit integers

'single' 4 Single-precision floating point data

'uint8' 1 Unsigned 8-bit integers

'uint16' 2 Unsigned 16-bit integers

'uint32' 4 Unsigned 32-bit integers

Like the iswritable, write, and read functions, isreadable checks
for valid address values. Illegal address values would be any address
space larger than the available space for the processor – 232 for the
C6xxx processor family and 216 for the C5xxx series. When the function
identifies an illegal address, it returns an error message stating that
the address values are out of range.

isreadable(cc,address,'datatype') returns 1 if the processor
referred to by cc can read the memory block defined by the address,
and datatype input arguments. When the processor cannot read any
portion of the specified memory block, isreadable returns 0. Notice
that you use the same memory block specification for this function as
you use for the read function. The data block being tested begins at the
memory location defined by address. When you omit the count option,
count defaults to one.

isreadable(rx,'channel') returns a 1 when the RTDX channel
specified by the string channel, associated with link rx, is configured
for read operation. When channel is not configured for reading,
isreadable returns 0.

7-64

isreadable

Like the iswritable, read, and write functions, isreadable checks for
valid address values. Illegal address values are address spaces larger
than the available space for the processor – 232 for the C6xxx processor
family and 216 for the C5xxx series. When the function identifies an
illegal address, it returns an error message stating that the address
values are out of range.

Note isreadable relies on the memory map option in CCS IDE. If
you did not properly define the memory map for the processor in CCS
IDE, isreadable does not produce useful results. Refer to your Texas
Instruments’ Code Composer Studio documentation for information on
configuring memory maps.

Examples When you write scripts to run models in the MATLAB environment and
CCS IDE, the isreadable function is very useful. Use isreadable
to check that the channel from which you are reading is configured
properly.

cc = ticcs;

rx = cc.rtdx;

% Define read and write channels to the processor linked by cc.

open(rx,'ichannel','r');s

open(rx,'ochannel','w');

enable(rx,'ochannel');

enable(rx,'ichannel');

isreadable(rx,'ochannel')

ans=

0

isreadable(rx,'ichannel')

ans=

1

7-65

isreadable

Now that your script knows that it can read from ichannel, it proceeds
to read messages as required.

See Also hex2dec, iswritable, read

7-66

isrtdxcapable

Purpose (For CCS) Determine whether processor supports RTDX

Note Support for isrtdxcapable on C5000 and C6000 processors will
be removed in a future version.

Syntax b=isrtdxcapable(cc)

Description b=isrtdxcapable(cc) returns b=1 when the processor referenced by
object cc supports RTDX. When the processor does not support RTDX,
isrtdxcapable returns b=0.

Using isrtdxcapable with Multiprocessor Boards

When your board contains more than one processor, isrtdxcapable
checks each processor on the processor, as defined by the cc object,
and returns the RTDX capability for each processor on the board. In
the returned variable b, you find a vector that contains the information
for each accessed processor.

Examples Create a link to your C6711 DSK. Test to see if the processor on the
board supports RTDX. It should.

cc=ticcs; %Assumes you have one board and it is the C6711 DSK.

b=isrtdxcapable(cc)

b =

1

7-67

isrunning

Purpose (For CCS) Determine whether processor is executing process

Syntax isrunning(cc)

Description isrunning(cc) returns 1 when the processor is executing a program.
When the processor is halted, isrunning returns 0.

Using isrunning with Multiprocessor Boards

When your board contains more than one processor, isrunning checks
each processor on the processor, as defined by the cc object, and returns
the state for each processor on the board. In the returned variable b, you
find a vector that contains the information for each accessed processor.

By providing a return variable, as shown here,

b = isrunning(cc)

b contains a vector that holds the information about the state of all
processors accessed by cc.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to be sure the
program is running before you enable RTDX channels.

cc = ticcs;

isrunning(cc)

ans =

0
% Load a program to the processor.

run(cc)
isrunning(cc)

ans =

7-68

isrunning

1

halt(cc)
isrunning(cc)

ans =

0

See Also halt, restart, run

7-69

isvisible

Purpose (For CCS) Determine whether CCS IDE is running

Syntax isvisible(cc)

Description isvisible(cc) determines whether CCS IDE is running on the desktop
and the window is open. If CCS IDE window is open, isvisible returns
1. Otherwise, the result is 0 indicating that CCS IDE is either not
running or is running in the background.

Examples Test to see if CCS IDE is running. Start CCS IDE. Then open MATLAB
software. At the prompt, enter

cc=ticcs

TICCS Object:
API version = 1.0
Processor type = C67
Processor name = CPU
Running? = No
Board number = 0
Processor number= 0
Default timeout = 10.00 secs

RTDX Object:
Timeout: 10.00 secs
Number of open channels: 0

MATLAB software creates a link to CCS IDE and leaves CCS IDE
visible on your desktop.

isvisible(cc)

ans =

1

Now, change the visibility state to 0, or invisible, and check the state.

7-70

isvisible

visible(cc,0)
isvisible(cc)

ans =

0

Notice that CCS IDE is not visible on your desktop. Recall that
MATLAB software did not open CCS IDE. When you close MATLAB
software with CCS IDE in this invisible state, CCS IDE remains
running in the background. To close it, do one of the following.

• Open MATLAB software. Create a new link to CCS IDE. Use the
new link to make CCS IDE visible. Close CCS IDE.

• Open Microsoft Windows® Task Manager. Click Processes. Find
and highlight cc_app.exe. Click End Task.

See Also info, visible

7-71

iswritable

Purpose (For CCS) Determine whether MATLAB software can write to specified
memory block

Note Support for iswritable(rx,'channel') on C5000 and C6000
processors will be removed in a future version.

Syntax iswritable(cc,address,'datatype’,count)
iswritable(cc,address,'datatype')
iswritable(rx,'channel')

Description iswritable(cc,address,'datatype’,count) returns 1 if MATLAB
software can write to the memory block defined by the address, count,
and datatype input arguments on the processor referred to by cc. When
the processor cannot write to any portion of the specified memory block,
iswritable returns 0. You use the same memory block specification for
this function as you use for the write function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to write. datatype
defines the format of data stored in the memory block. iswritable
uses the datatype parameter to determine the number of bytes to
write per stored value. For details about each input parameter, read
the following descriptions.

address — iswritable uses address to define the beginning of the
memory block to write to. You provide values for address as either
decimal or hexadecimal representations of a memory location in the
processor. The full address at a memory location consists of two parts:
the offset and the memory page, entered as a vector [location, page], a
string, or a decimal value. When the processor has only one memory
page, as is true for many digital signal processors, the page portion
of the memory address is 0. By default, ticcs sets the page to 0 at
creation if you omit the page property as an input argument.

7-72

iswritable

For processors that have one memory page, setting the page value to 0
lets you specify all memory locations in the processor using the memory
location without the page value.

Examples of Address Property Values

Property
Value Address Type Interpretation

1F String Location is 31 decimal on the
page referred to by cc.page

10 Decimal Address is 10 decimal on the
page referred to by cc.page

[18,1] Vector Address location 10 decimal
on memory page 1 (cc.page
= 1)

To specify the address in hexadecimal format, enter the address
property value as a string. iswritable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. Note that
when you use the string option to enter the address as a hex value, you
cannot specify the memory page. For string input, the memory page
defaults to the page specified by cc.page.

count — a numeric scalar or vector that defines the number of
datatype values to test for being writable. To assure parallel structure
with write, count can be a vector to define multidimensional data
blocks. This function always tests a block of data whose size is the total
number of elements in matrix specified by the input vector. If count is
the vector [10 10 10]

iswritable(cc,31,[10 10 10])

iswritable writes 1000 values (10*10*10) to the processor. For a
two-dimensional matrix defined with count as

iswritable(cc,31,[5 6])

7-73

iswritable

iswritable writes 30 values to the processor.

datatype — a string that represents a MATLAB data type. The total
memory block size is derived from the value of count and the specified
datatype. datatype determines how many bytes to check for each
memory value. iswritable supports the following data types:

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

iswritable(cc,address,'datatype') returns 1 if the processor
referred to by cc can write to the memory block defined by the address,
and count input arguments. When the processor cannot write any
portion of the specified memory block, iswritable returns 0. Notice
that you use the same memory block specification for this function as
you use for the write function. The data block tested begins at the
memory location defined by address. When you omit the count option,
count defaults to one.

Note iswritable relies on the memory map option in CCS IDE. If
you did not properly define the memory map for the processor in CCS
IDE, this function does not produce useful results. Refer to your Texas
Instruments’ Code Composer Studio documentation for information on
configuring memory maps.

7-74

iswritable

Like the isreadable, read, and write functions, iswritable checks
for valid address values. Illegal address values would be any address
space larger than the available space for the processor – 232 for the
C6xxx processor family and 216 for the C5xxx series. When the function
identifies an illegal address, it returns an error message stating that
the address values are out of range.

iswritable(rx,'channel') returns a Boolean value signifying
whether the RTDX channel specified by channel and rx, is configured
for write operations.

Examples When you write scripts to run models in MATLAB software and CCS
IDE, the iswritable function is very useful. Use iswritable to check
that the channel to which you are writing to is indeed configured
properly.

cc = ticcs;

rx = cc.rtdx;

% Define read and write channels to the processor linked by cc.

open(rx,'ichannel','r');

open(rx,'ochannel','w');

enable(rx,'ochannel');

enable(rx,'ichannel');

iswritable(rx,'ochannel')

ans=

1

iswritable(rx,'ichannel')

ans=

0

Now that your script knows that it can write to 'ichanne'l, it proceeds
to write messages as required.

See Also hex2dec, isreadable, read

7-75

list

Purpose (For CCS) Information listings from CCS

Syntax list(ff,varname)
infolist = list(cc,'type')
infolist = list(cc,'type',typename)

Note list(cc,type) produces an error.

Description list(ff,varname) lists the local variables associated with
the function accessed by function object ff. Compare to
list(cc,'variable','varname') which works the same way to return
variables from ticcs object cc.

Note list does not recognize or return information about variables
that you declare in your code but that are not used or initialized.

Some restrictions apply when you use list with function objects. list
generates an error in the following circumstances:

• When varname is not a valid input argument for the function accessed
by ff

For example, if your function declaration is

int foo(int a)

but you request information about input argument b, which is not
defined

list(ff,'b')

MATLAB software returns an error.

• When varname is the same as a variable assigned by MATLAB
software. Usually this happens when you use declare to pass

7-76

list

a function declaration to MATLAB software and the declaration
string does not match the declaration for ff as determined when
you created ff.

In an example that demonstrates this problem, the function
declaration has a name for the first input, a. In the declare call, the
declaration string does not provide a name for the first input, just
a data type, int. When you issue the declare call, MATLAB software
names the first input ML_Input1. If you try to use list to get
information about the input named ML_Input, list returns an error.
Here is the code, starting with the function declaration in your code:

int foo(int a) % Function declaration in your source code

declare(ff,'decl','int foo(int)')

% MATLAB generates a warning that it has assigned the name

% ML_Input to the first input argument

list(ff,'ML_Input') % list returns an error for this call

• When varname does not match the input name in the function
declaration provided in your source code, as compared to the
declaration string you used in a declare operation.

Assume your source code includes a function declaration for foo:

int foo(int a);

Now pass a declaration for foo to MATLAB software:

declare(ff,'decl','int foo(int b)')

MATLAB software issues a warning that the input names do not
match. When you use list on the input argument b,

list(ff,'b')

list returns an error.

7-77

list

• When varname is an input to a library function. list always fails in
this case. It does not matter whether you use declare to provide the
declaration string for the library function.

Note When you call list for a variable in a function object
list(ff,varname)the address field may contain an incorrect address
if the program counter is not within the scope of the function that
includes varname when you call list.

infolist = list(cc,type) reads information about your CCS session
and returns it in infolist. Different types of information and return
formats apply depending on the input arguments you supply to the list
function call. The type argument specifies which information listing to
return. To determine the information that list returns, use one of the
following as the type parameter string:

• project— Tell list to return information about the current project
in CCS.

• variable — Tell list to return information about one or more
embedded variables.

• globalvar — Tell list to return information about one or more
global embedded variables.

• function— Tell list to return details about one or more functions
in your project.

• type — Tell list to return information about one or more defined
data types, including struct, enum, and union. ANSI C data type
typedefs are excluded from the list of data types.

Note, the list function returns dynamic CCS information that can
be altered by the user. Returned listings represent snapshots of
the current CCS configuration only. Be aware that earlier copies of
infolist might contain stale information.

7-78

list

Also, list may report incorrect information when you make changes
to variables from MATLAB software. To report variable information,
list uses the CCS API, which only knows about variables in CCS. Your
changes from MATLAB software, such as changing the data type of a
variable, do not appear through the API and list. For example, the
following operations return incorrect or old data information from list.

Suppose your original prototype is

unsigned short tgtFunction7(signed short signedShortArray1[]);

After creating the function object fcnObj, perform a declare operation
with this string to change the declaration:

unsigned short tgtFunction7(unsigned short signedShortArray1[]);

Now try using list to return information about signedShortArray1.

list(fcnObj,'signedShortArray1')

address: [3442 1]
location: [1x66 char]

size: 1
type: 'short *'

bitsize: 16
reftype: 'short'
referent: [1x1 struct]

member_pts_to_same_struct: 0
name: 'signedShortArray1'

The type field reports the original data type short.

You get this is because list uses the CCS API to query information
about any particular variable. As far as the API is concerned, the first
input variable is a short*. Changing the declaration does not change
anything.

7-79

list

infolist = list(cc,'project') returns a vector of structures
containing project information in the format shown here when you
specify option type as project.

infolist Structure Element Description

infolist(1).name Project file name (with path).

infolist(1).type Project type — project,projlib,
or projext, refer to new

infolist(1).processortype String description of processor
CPU

infolist(1).srcfiles Vector of structures that describes
project source files. Each
structure contains the name
and path for each source file —
infolist(1).srcfiles.name

infolist(1).buildcfg Vector of structures that describe
build configurations, each with
the following entries:

• infolist(1).buildcfg.name
— the build configuration name

• infolist(1).buildcfg.outpath
— the default directory for
storing the build output.

infolist(2).... ...

infolist(n).... ...

infolist = list(cc,'variable’) returns a structure of structures
that contains information on all local variables within scope. The list
also includes information on all global variables. Note, however, that
if a local variable has the same symbol name as a global variable, list
returns the information about the local variable.

7-80

list

infolist = list(cc,'variable’,varname) returns information about
the specified variable varname.

infolist = list(cc,’variable’,varnamelist) returns information
about variables in a list specified by varnamelist. The information
returned in each structure follows the format below when you specify
option type as variable:

infolist Structure Element Description

infolist.varname(1).name Symbol name

infolist.varname(1).isglobal Indicates whether symbol is global
or local

infolist.varname(1).location Information about the location of
the symbol

infolist.varname(1).size Size per dimension

infolist.varname(1).uclass ticcs object class that matches
the type of this symbol

infolist.varname(1).bitsize Size in bits. More information is
added to the structure depending
on the symbol type.

infolist.(varname1).type data type of symbol

infolist.varname(2).... ...

infolist.varname(n).... ...

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = list(cc,'globalvar') returns a structure that contains
information on all global variables.

infolist = list(cc,'globalvar',varname) returns a structure that
contains information on the specified global variable.

infolist = list(cc,'globalvar',varnamelist) returns a structure
that contains information on global variables in the list. The

7-81

list

returned information follows the same format as the syntax
infolist = list(cc,'variable',...).

infolist = list(cc,'function') returns a structure that contains
information on all functions in the embedded program.

infolist = list(cc,'function',functionname) returns a structure
that contains information on the specified function functionname.

infolist = list(cc,'function',functionnamelist) returns a
structure that contains information on the specified functions in
functionnamelist. The returned information follows the format below
when you specify option type as function:

infolist Structure Element Description

infolist.functionname(1).name Function name

infolist.functionname(1).filename Name of file where
function is defined

infolist.functionname(1).address Relevant address
information such as
start address and end
address

infolist.functionname(1).funcvar Variables local to the
function

infolist.functionname(1).uclass ticcs object class
that matches the
type of this symbol —
function

infolist.functionname(1).funcdecl Function declaration
— where information
such as the function
return type is
contained

infolist.functionname(1).islibfunc Is this a library
function?

7-82

list

infolist Structure Element Description

infolist.functionname(1).linepos Start and end line
positions of function

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)... ...

infolist.functionname(n)... ...

To refer to the function structure information, list uses the function
name as the field name.

infolist = list(cc,'type') returns a structure that contains
information on all defined data types in the embedded program. This
method includes struct, enum and union data types and excludes
typedefs. The name of a defined type is its ANSI C struct tag, enum tag
or union tag. If the ANSI C tag is not defined, it is referred to by the
CCS compiler as '$faken' where n is an assigned number.

infolist = list(cc,'type',typename) returns a structure that
contains information on the specified defined data type.

infolist = list(cc,'type',typenamelist) returns a structure that
contains information on the specified defined data types in the list.
The returned information follows the format below when you specify
option type as type:

infolist Structure Element Description

infolist.typename(1).type Type name

infolist.typename(1).size Size of this type

infolist.typename(1).uclass ticcs object class that
matches the type of
this symbol. Additional
information is added
depending on the type

7-83

list

infolist Structure Element Description

infolist.typename(2).... ...

infolist.typename(n).... ...

For the field name, list uses the type name to refer to the type
structure information.

The following list provides important information about variable and
field names:

• When a variable name, type name, or function name is not a valid
MATLAB software structure field name, list replaces or modifies
the name so it becomes valid.

• In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

• Changing the MATLAB software field name does not change the
name of the embedded symbol or type.

Examples This first example shows list used with a variable, providing
information about the variable varname. Notice that the invalid field
name _with_underscore gets changed to Q_with_underscore. To make
the invalid name valid, list inserts the character Q before the name.

varname1 = '_with_underscore'; % invalid fieldname
list(cc,'variable',varname1);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore
ans=

name: '_with_underscore'
isglobal: 0
location: [1x62 char]

size: 1

7-84

list

uclass: 'numeric'
type: 'int'

bitsize: 16

To demonstrate using list with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, list changes the $ to DOLLAR.

typename1 = '$fake3'; % name of defined C type with no tag
list(cc,'type',typename1);
ans =

DOLLARfake0 : [typeinfo]

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1

uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in CCS, you see a listing
like the following that includes structures containing details about your
project.

projectinfo=list(cc,'project')

projectinfo =

name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'

type: 'project'

processortype: 'TMS320C67XX'

srcfiles: [69x1 struct]

buildcfg: [3x1 struct]

See Also info

7-85

load

Purpose (For CCS) Transfer program file (*.out, *.obj) to processor in active
project

Syntax load(cc,'filename',timeout)
load(cc,'filename')
load(cc,'gelfilename',timeout)

Description load(cc,'filename',timeout) loads the file specified by filename into
the processor. filename can include a full path to a file, or just the
name of a file that resides in the CCS working directory. Use cd to
check or modify the working directory. Only use load with program
files that are created by the CCS build process.

timeout defines the upper limit on how long MATLAB software waits
for the load process to be complete. If this period is exceeded, load
returns immediately with a timeout error.

load(cc,'filename') loads the file specified by filename into the
processor. filename can include a full path to a file, or just the name
of a file that resides in the CCS working directory. Use cd to check or
modify the working directory. Only use load with program files that
are created by the CCS build process. timeout defaults to the global
value you set when you created link cc.

Note load disables all open channels. Open channels revert to
disabled.

load(cc,'gelfilename',timeout) loads and opens the general
extension language (GEL) file named gelfilename into CCS, in the
active project. gelfilename needs to be the full path to the file, or just
the file name if the file already shows up in your CCS workspace or
project. load adds the GEL file to the active project only. To make a
different project active so you can add your GEL file to it, use activate.

The timeout option is not required, as is true for most methods in the
product. Using load to add a GEL file is identical to using the File

7-86

load

> Load GEL option in CCS IDE. Your loaded GEL file appears in the
GEL files folder in CCS. To remove GEL files, use remove. You can
load any GEL file — you must be sure the GEL file is the correct one.
load does not attempt to verify whether the GEL file is appropriate for
your hardware or project.

Examples Taken from the CCS link tutorial, this code prepares for and loads an
object file filename.out to a processor.

projfile =...

fullfile(matlabroot,'directoryname','directoryname','filename')

projpath = fileparts(projfile)

open(cc,projfile) % Open project file

cd(cc,projpath) % Change Code Composer working directory

Now use CCS IDE to build your file. Select Project > Build from
the menu bar in CCS IDE.

With the project build complete, load your .out file by entering

load(cc,'filename.out')

See Also cd, dir, open

7-87

msgcount

Purpose (For CCS) Number of messages in read-enabled channel queue

Note Support for msgcount on C5000 and C6000 processors will be
removed in a future version.

Syntax msgcount(rx,'channel')

Description msgcount(rx,'channel') returns the number of unread messages in
the read-enabled queue specified by channel for the RTDX interface rx.
You cannot use msgcount on channels configured for write access.

Examples If you have created and loaded a program to the processor, you can
write data to the processor, then use msgcount to determine the number
of messages in the read queue.

1 Create and load a program to the processor.

2 Write data to the processor from MATLAB software.

indata=1:100;
writemsg(cc.rtdx,'ichannel', int32(indata));

3 Use msgcount to determine the number of messages available in
the queue.

num_of_msgs = msgcount(cc.rtdx,'ichannel')

See Also read, readmat, readmsg

7-88

new

Purpose (For CCS) Create and open text file, project, or build configuration in
CCS IDE

Note new(cc,objectname,'text') produces an error.

Syntax new(cc,'objectname','type')
new(cc,'objectname')

Description new(cc,'objectname','type') creates and opens an empty object of
type named objectname in the active project in CCS IDE. The new
object can be a text file, a project, or a build configuration. String
objectname specifies the name of the new object. When you create new
text files or projects, objectname can include a full path description.
When you save your new project or file, CCS IDE stores the file at the
processor of the full path.

If you do not provide a full path for your file, new stores the file in the
CCS IDE working directory when you save it. New files open as active
windows in CCS IDE; they are not placed in the active project folders
based on their file extension (compare to add).

New build configurations always become part of the active project in
CCS IDE. Because build configurations always become part of a project,
you only need to enter a name to distinguish your new configuration
from existing configurations in the project, such as Debug and Release.

To specify the text file or project to create, objectname must be the full
path name to the file, unless your file is in a directory on your MATLAB
software path, or the file is in your CCS working directory. Also, when
you create new text files or projects, you must include the file extension
in objectname.

type accepts one of the strings or entries listed in the following table.

type String Description

'text' Create a new text file in the active project.

7-89

new

type String Description

'project' Create a new project.

'projext' Create a new CCS external make project.
Using this option indicates that your project
uses and external makefile. Refer to your CCS
documentation for more information about
external projects.

'projlib' Create a new library project with the .lib file
extension. Refer to your CCS documentation for
more information about library projects.

[] Create a new project. The [] indicate that you
are creating a .pjt file.

'buildcfg' Create a new build configuration in the active
project.

Use new to create the file types listed in the following table.

File Types and Extensions Supported by new and CCS IDE

File Type to Create type String Used
Supported
Extensions

C/C++ source files 'text' .c, .cpp, .cc, .ccx,
.sa

Assembly source files 'text' .a*, .s* (excluding
.sa, refer to C/C++
source files)

Object and Library
files

'text' .o*, .lib

Linker command file 'text' .cmd

Project file 'project' .pjt

Build configuration 'buildcfg' No extension

7-90

new

Caution After you create an object in CCS IDE, save the file in CCS
IDE. new does not automatically save the file, and you lose your changes
when you close CCS IDE.

new(cc,'objectname') creates a project in CCS IDE, making it the
active project. When you omit the type option, new assumes you are
creating a new project and appends the .pjt extension to objectname
to create the project objectname.pjt. The .pjt extension is the only
extension new recognizes.

Examples When you need a new project, create a link to CCS IDE and use the link
to make a new project in CCS IDE.

cc=ticcs;

cc.visible(1) % Make CCS IDE visible on your desktop (optional).

new(cc,'my_new_project.pjt','project');

New files of various types result from using new to create new active
windows in CCS IDE. For instance, make a new ANSI C source file in
CCS IDE with the following command:

new(cc,'new_source.c','text');

In CCS IDE you see your new file as the active window.

See Also activate, close, save

7-91

open

Purpose (For CCS) Open channel to processor or load file into CCS IDE

Note open(rx,...) uses RTDX. Embedded IDE Link no longer
supports RTDX for C6000 processors and will remove support for C5000
processors in a future version.

open(cc,filename,'text') produces an error.

open(cc,filename,'workspace') produces an error.

open(cc,filename,'program') produces an error. Use load instead.

Syntax open(rx,'channel1','mode1','channel2','mode2',...)
open(rx,channel,mode)
open(cc,filename,filetype,timeout)
open(cc,filename,filetype)
open(cc,filename)

Description open(rx,'channel1','mode1','channel2','mode2',...) opens new
RTDX channels associated with the link rx. Each new channel uses
the string name channel1, channel2, and so on. For each channel,
open configures the channel according to the associated mode string.
Channel1 uses mode1; channel2 uses mode2, and so forth. Mode strings
are either:

• r— Configure the channel to read data from the processor.

• w— Configure the channel for writing data to the processor.

open(rx,channel,mode) opens a new channel to the processor
associated with the link rx. The new channel uses the channel string
and is configured for reading or writing according to the mode string.

7-92

open

open(cc,filename,filetype,timeout) loads filename into CCS IDE.
filename can be the full path to the file or, if the file is in the current
CCS IDE working directory, you can use a relative path, such as the
name of the file.

Use cd to determine or change the CCS IDE working directory. You use
the filetype option to override the default file extension. The filetype
string, 'project', is the only string that works in this function syntax.

filetype String Extension Description

project .c, .a*, .s*, .o*, .lib,
.cmd,.mak

CCS IDE project files

To determine how long MATLAB software waits for open to load the
file into CCS IDE, timeout sets the upper limit, in seconds, for the
period MATLAB software waits for the load. If MATLAB software waits
more than timeout seconds, load returns immediately with a timeout
error. Returning a timeout error does not suspend the operation; it
stops MATLAB software from waiting for confirmation for the operation
completion.

open(cc,filename,filetype) loads filename into CCS IDE. filename
can be the full path to the file or, if the file is in the current CCS IDE
working directory, you can use a relative path, such as the name of
the file. Use the cd function to determine or change your CCS IDE
working directory. You use the filetype option to override the default
file extension. Refer to the previous syntax for more information about
filetype. When you omit the timeout option in this syntax, MATLAB
software uses the global timeout set in cc.

open(cc,filename) loads filename into CCS IDE. filename can be
the full path to the file or, if the file is in the current CCS IDE working
directory, you can use a relative path, such as the name of the file. Use
the cd function to determine or change the CCS IDE working directory.
You use the filetype option to override the default file extension.
Refer to the previous syntax for more information about filetype.
When you omit the filetype and timeout options in this syntax,
MATLAB software uses the global timeout set in cc, and derives the

7-93

open

file type from the extension in filename. Refer to the previous syntax
descriptions for more information on the input options.

Note You cannot write to or read from channels that you opened but
did not enable.

Examples For RTDX use, open forms part of the function pair you use to open
and enable a communications channel between MATLAB software and
your processor.

cc = ticcs;
rx = cc.rtdx;
open(rx,'ichannel','w');
enable(rx,'ichannel');

When you are working with CCS IDE, open adopts a different
operational form based on your input arguments for filename and the
optional arguments filetype and timeout. In the CCS IDE variant,
open loads the specified file into CCS IDE. For example, to load the
tutorial program used in Getting Started with Automation Interface,
use the following syntax

cc = ticcs;
cc.load(tutorial_6xevm.out);

See Also cd, dir, load

7-94

profile

Purpose (For CCS) Code execution and stack usage profile report

Note The tic and raw profile report options that depend on DSP/BIOS
will be removed in a future release. Use report for all profiling.

Syntax ps=profile(cc, execution ,'format',timeout)
ps=profile(cc,'execution','format')
profile(cc,'stack','action')

Description ps=profile(cc, execution ,'format',timeout) returns execution
profile measurements from the generated code. Structure ps contains
the information in either raw form or filtered and formatted into fields.

To use profile to assess how your program executes in real-time,
complete the following tasks with a Simulink model:

1 Enable real-time execution profiling in the configuration parameters
and build your model.

2 Select whether to profile by task or subsystem.

3 Build your model.

4 Download your program to the processor.

5 Run the program on the processor.

6 Stop the running program.

7 Use profile at the MATLAB command prompt to access the
profiling reports.

If your project uses DSP/BIOS, the profiling system uses CLK and STS
objects to profile your project. STS objects buffer statistics data accesses
by statistics functions in the operating system. The objects are a service
provided by the DSP/BIOS real-time kernel. For details about STS

7-95

profile

objects and DSP/BIOS, refer to your Texas Instruments documentation
that came with CCS IDE.

Note Profiling works with and without enabling DSP/BIOS in your
project. To use DSP/BIOS, you must install Target Support Package.

To define how to return the profiling information, set the format input
argument.

format String Description

raw Returns an unformatted list of the timing
objects (profiling) information. Returns and
formats all time-based objects.

report Returns the same data as the raw option,
formatted into an HTML report. Works
only on projects that include DSP/BIOS. If
you own Target Support Package software,
profile(cc,'execution','report') provides
more information about code you generate from
Simulink software models.

tic Returns a formatted list of the STS timing
objects information. Filters out some of the
information returned with the raw option. To
be returned by this format, the object must
be time-based. Does not return user-defined
objects. Use raw to see user-defined objects.

Entries in the next table explain when you can use raw, report, and
tic with your projects—whether the format applies to task or atomic
subsystem profiling and whether the format applies with DSP/BIOS.

7-96

profile

format
String

Profiling by
Parameter

DSP/BIOS
Project

Non-DSP/BIOS
Project

Task No Noraw

Atomic
Subsystem

Yes No

Task No Yesreport

Atomic
Subsystem

Yes Yes

Task No Notic

Atomic
Subsystem

Yes No

The following examples show the different report formats that raw,
report, and tic provide:

• raw

cpuload: 0
error: 0

avgperiod: 1000
rate: 1000
obj: [4x1 struct]

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
1

name: 'KNL_swi'
units: 'Hi Time'

max: 1564
total: 10644

avg: 367.0345
pdfactor: 0.0075

count: 29

7-97

profile

2

name: 'processing_SWI'
units: 'Hi Time'

max: 1528
total: 3052

avg: 1526
pdfactor: 0.0075

count: 2

3

name: 'TSK_idle'
units: 'Hi Time'

max: -2.1475e+009
total: 0

avg: 0
pdfactor: 0.0075

count: 0

4

name: 'IDL_busyObj'
units: 'User Def'

max: -2.1475e+009
total: 0

avg: 0
pdfactor: 0

count: 0

• report (without DSP/BIOS)

“Profiling Execution by Tasks” on page 4-10

• report (with DSP/BIOS)

“Profiling Execution by Subsystems” on page 4-12

• tic

7-98

profile

cpuload: 0
obj: [3x1 struct]

ps.obj(1)

ans =

name: 'KNL_swi'
units: 'Hi Time'

max: 1.1759e-005
avg: 2.7597e-006

count: 29

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
1

name: 'KNL_swi'
units: 'Hi Time'

max: 1.1759e-005
avg: 2.7597e-006

count: 29

2

name: 'processing_SWI'
units: 'Hi Time'

max: 1.1489e-005
avg: 1.1474e-005

count: 2

3

name: 'TSK_idle'
units: 'Hi Time'

max: -16.1465
avg: 0

count: 0

7-99

profile

When you choose raw, returned variable ps contains an undocumented
list of the information provided by CCS IDE. The tic option provides
the same information in ps, as a collection of fields.

Fields in ps Description

ps.cpuload Execution time in percent of total time
spent out of the idle task.

ps.obj Vector of defined STS objects in the
project.

ps.obj(n).name User-defined name for an STS object
sts(n). Value for n ranges from 1 to
the number of defined STS objects.

ps.obj(n).units Either Hi Time or Low Time. Describes
the timer applied by this STS object,
high- or low- resolution time based.

ps,obj(n).max Maximum measured profile period for
sts(n), in seconds.

ps.obj(n).avg Average measured profile period for
sts(n), in seconds.

ps.obj(n).count Number of STS measurements taken
while executing the program.

Note When you enable DSP/BIOS in your project, your CLK and STS
must be configured correctly for the profiling information to be accurate.
Use the DSP/BIOS configuration file to add and configure CLK and
STS objects for your project.

With projects that you generate that use DSP/BIOS, the report
option creates a report that contains all of the information provided

7-100

profile

by the other options, plus additional data that comes from DSP/BIOS
instrumentation in the project.

ps=profile(cc,'execution','format') defaults to the timeout period
specified in the ticcs object cc.

profile(cc,'stack','action') returns the CPU stack usage from
your application. action defines the stack use profile operation and
accepts one of the strings in the following table.

action String Description

setup Initializes the CPU stack with known
patterns. Writes 0xA5 to the stack
addresses on C6000 processors
and 0xA5A5 on C2000 and C5000
processors.

report Returns the report of the stack usage
from running your application.

The MATLAB output from profiling the system stack has the elements
described in the following table.

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name
assigned to the stack.

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

endAddress Decimal address and
page

Lists the address of the
end of the stack and
the memory page.

7-101

profile

Report Entry Units Description

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for
the stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

To use profile to assess how your program uses the stack, complete
the following tasks with a Simulink model or manually written code:

1 Build your model with real-time execution profiling enabled in the
configuration parameters. Skip this step for custom code.

2 Download your program to the processor.

3 Run the program on the processor.

4 Stop the running program.

5 Use profile at the MATLAB command prompt to access the
profiling reports.

For more information about using stack profiling, refer to “System
Stack Profiling” on page 4-17.

Using Profiling

The following items affect your ability to profile project execution and
stack usage:

7-102

profile

Execution profiling works on code you generate from a Simulink
model. You cannot profile manually written code that you provide in
your project.

Stack profiling works with both model-generated code and your
custom code.

Stack profiling does not work when your project uses DSP/BIOS. You
get an error when you profile the system stack with DSP/BIOS enabled.

To use DSP/BIOS, you must install Target Support Package software.

For more information about enabling and using execution profiling,
refer to “Profiling Code Execution in Real-Time” on page 4-9.

Examples This example presents two forms of the data returned by profile—tic
and raw. The generated code did not includeDSP/BIOS.

Running profile returns structure ps containing profiling data
gathered while your program ran. Stop the running program before
you request the profile data.

ps=profile(cc,'execution','tic')

ps =

cpuload: 0
obj: [3x1 struct]

ps.obj(1)

ans =

name: 'KNL_swi'
units: 'Hi Time'

max: 1.1759e-005
avg: 2.7597e-006

count: 29

7-103

profile

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
1

name: 'KNL_swi'
units: 'Hi Time'

max: 1.1759e-005
avg: 2.7597e-006

count: 29

2

name: 'processing_SWI'
units: 'Hi Time'

max: 1.1489e-005
avg: 1.1474e-005

count: 2

3

name: 'TSK_idle'
units: 'Hi Time'

max: -16.1465
avg: 0

count: 0

Omitting the format option caused profile to return the data fully
formatted and slightly filtered. Adding the raw option to profile
returns the same information without filtering any of the returned data.

ps=profile(cc,'execution','raw')

ps =

cpuload: 0
error: 0

avgperiod: 1000
rate: 1000

7-104

profile

obj: [4x1 struct]

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
1

name: 'KNL_swi'
units: 'Hi Time'

max: 1564
total: 10644

avg: 367.0345
pdfactor: 0.0075

count: 29

2

name: 'processing_SWI'
units: 'Hi Time'

max: 1528
total: 3052

avg: 1526
pdfactor: 0.0075

count: 2

3

name: 'TSK_idle'
units: 'Hi Time'

max: -2.1475e+009
total: 0

avg: 0
pdfactor: 0.0075

count: 0

4

name: 'IDL_busyObj'
units: 'User Def'

7-105

profile

max: -2.1475e+009
total: 0

avg: 0
pdfactor: 0

count: 0

Your results can differ from this example depending on your computer
and processor. The raw-format data in this example includes one extra
timing object—IDL_busyObj. As defined in the .tcf file, this object is
not time based (Units is 'User Def'). Specifying tic does not return
the IDL_busyObj object.

The following example demonstrates setting up and profiling the system
stack. The ticcs object cc must exist in your MATLAB workspace and
your application must be loaded on your processor. This example comes
from a C6713 simulator.

profile(cc,'stack','setup') % Set up processor stack--write 0xA5 to stack addresses.

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

run(cc)

halt(cc)

profile(cc,'stack','report') % Request stack use report.

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

7-106

profile

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

See Also ticcs

7-107

read

Purpose (For CCS) Data from memory on processor or in CCS

Syntax mem = read(cc,address,'datatype',count,timeout)
mem = read(cc,address,'datatype',count)
mem = read(cc,address,'datatype')

Description ticcs Object Syntaxes

mem = read(cc,address,'datatype',count,timeout) returns data
from the processor referred to by cc. The address, count, and
datatype input arguments define the memory block to be read. The
data block to read begins at the memory location defined by address.
count determines the number of values to read, starting at address.
datatype defines the format of the raw data stored in the referenced
memory block.

To check values in memory on a running processor, such as values
that change during processing, insert one or more breakpoints in the
project code and perform the read operation while the processor code
is paused at one of the breakpoints. After you read the data, release
the breakpoint.

Note

Do not attempt to read data from the processor while it is running.
Reading data from a running process can produce incorrect values.

read uses the datatype parameter to determine the number of bytes
to read per stored value. timeout is an optional input argument you
use to specify when to terminate long read processes and data transfers.
For details about each input parameter, read the following descriptions.

address — read uses address to define the beginning of the memory
block to read. You provide values for address as either decimal or
hexadecimal representations of a memory location in the processor. The
full address at a memory location consists of two parts: the offset and
the memory page, entered as a vector [location, page], a string, or a

7-108

read

decimal value. When the processor has only one memory page, as is
true for many digital signal processors, the value of the page portion
of the memory address is 0. By default, ticcs sets the page to 0 at
creation if you omit the page property as an input argument.

For processors that have one memory page, setting the page value to 0
lets you specify all memory locations in the processor using the memory
location without the page value.

Examples of Address Property Values

Property
Value Address Type Interpretation

1F String Offset is 31 decimal on the page
referred to by cc.page

10 Decimal Offset is 10 decimal on the page
referred to by cc.page

[18,1] Vector Offset is 18 decimal on memory
page 1 (cc.page = 1)

To specify the address in hexadecimal format, enter the address
property value as a string. read interprets the string as the hexadecimal
representation of the desired memory location. To convert the hex value
to a decimal value, the function uses hex2dec. Note that when you
use the string option to enter the address as a hex value, you cannot
specify the memory page. For string input, the memory page defaults
to the page specified by cc.page.

count— a numeric scalar or vector that defines the number of datatype
values to read. Entering a scalar for count causes read to return mem
as a column vector which has count elements. count can be a vector
to define multidimensional data blocks. The elements of count define
the dimensions of the data matrix returned in mem. The following table
shows examples of input arguments to count and how read responds.

7-109

read

Input Response

n Read n values into a column vector. Return the
vector in mem.

[m,n] Read (m*n) values from memory into an m-by-n
matrix in column major order. Return the matrix
in mem.

[m,n,p,...] Read (m*n*p*...) values from the processor
memory in column major order. Return the data
in an m-by-n-by-p-by... multidimensional matrix
and return the matrix in mem.

datatype — a string that represents a MATLAB data type. The total
memory block size is derived from the value of count and the specified
datatype. datatype determines how many bytes to check for each
memory value. read supports the following data types:

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

To limit the time that read spends transferring data from the processor,
the optional argument timeout tells the data transfer process to stop
after timeout seconds. timeout is defined as the number of seconds
allowed to complete the read operation. You might find this useful for
limiting prolonged data transfer operations. If you omit the timeout
option in the syntax, read defaults to the global timeout defined in cc.

7-110

read

Working with Negative Values

Writing a negative value causes the data written to be saturated
because char is unsigned on the processor. Hence, a 0 (a NULL) is
written instead. A warning results as well, as this example shows.

cc = ticcs;

ff = createobj(cc,'g_char'); % Where g_char is in the code.

write(ff,-100);

Warning: Underflow: Saturation was required to fit the data into

an addressable unit.

When you try to read the data you wrote, the character being read is
0 (NULL) — so there seems to be nothing returned by the read function.

You can demonstrate this by the following code, after writing a negative
value as shown in the previous example.

readnumeric(x)

ans =

0

read(x) % Reads the NULL character

ans = % Apparently nothing is returned.

double(read(x)) % Read the numeric equivalent of NULL.

ans = % Again, appears not to return a value.

mem = read(cc,address,'datatype',count) reads data from memory
on the processor referred to by cc and defined by the address, and
datatype input arguments. The data block being read begins at the
memory location defined by address. count determines the number of
values to be read. When you omit the timeout option, timeout defaults
to the value specified by the timeout property in cc.

mem = read(cc,address,'datatype') reads the memory location
defined by the address input argument from the processor memory
referred to by cc. The data block being read begins at the memory
location defined by address. When you omit the count option, count

7-111

read

defaults to a value of 1. This syntax reads one memory location of
datatype.

Note To ensure seamless read operation, use address to extract
address values that are compatible with the alignment required by your
processor.read does not force data type alignment in your processor
memory.

Certain combinations of address and datatype are difficult for some
processors to use. To ensure seamless read operation, use the address
function to extract address values that are compatible with the
alignment required by your processor.

Like the isreadable, iswritable, and write functions, read checks
for valid address values. Illegal address values are any address space
larger than the available space for the processor — 232 for the C6xxx
processor family and 216 for the C5xxx series. When read identifies an
illegal address, it returns an error message stating that the address
values are out of range.

Examples read reads data that you wrote to the processor.

cc = ticcs;

indata = 1:25;

write(cc,0,indata,30);

outdata=read(cc,0,'double',25,10)

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

7-112

read

14 15 16 17 18 19 20 21 22 23 24 25

outdata now contains the values in indata, returned from the
processor.

As a further demonstration of read, try the following functions after you
create a link cc and load an appropriate program to your processor. To
perform the first example, var must exist in the symbol table loaded
in CCS.

• Read one 16-bit integer at the location of processor symbol var.

mlvar = read(cc,address(cc,'var'),'int16')

• Read 100 32-bit integers from address f000 (hexadecimal) and plot
the data.

mlplt = read(cc,'f000','int32',100)
plot(double(mlplt))

• Increment the integer value stored at address 10 (decimal) of the
processor.

cc = ticcs;
ainc = 10
mlinc = read(cc,ainc,'int32')
mlinc = int32(double(mlinc)+1)
cc.write(ainc,mlinc)

See Also isreadable, symbol, write

7-113

readmat

Purpose (For CCS) Matrix of data from RTDX channel

Note Support for readmat on C5000 and C6000 processors will be
removed in a future version.

Syntax data = readmat(rx,channelname,'datatype',siz,timeout)
data = readmat(rx,channelname,'datatype',siz)

Description data = readmat(rx,channelname,'datatype',siz,timeout) reads
a matrix of data from an RTDX channel configured for read access.
datatype defines the type of data to read, and channelname specifies
the queue to read. readmat reads the desired data from the RTDX link
specified by rx.

Before you read from a channel, open and enable the channel for read
access.

Replace channelname with the string you specified when you opened
the desired channel. channelname must identify a channel that you
defined in the program loaded on the processor.

You cannot read data from a channel you have not opened and
configured for read access. If necessary, use the RTDX tools provided in
CCS IDE to determine which channels exist for the loaded program.

data contains a matrix whose dimensions are given by the input
argument vector siz, where siz can be a vector of two or more elements.
To operate properly, the number of elements in the output matrix data
must be an integral number of channel messages.

When you omit the timeout input argument, readmat reads messages
from the specified channel until the output matrix is full or the global
timeout period specified in rx elapses.

7-114

readmat

Caution If the timeout period expires before the output data matrix is
fully populated, you lose all the messages read from the channel to
that point.

MATLAB software supports reading five data types with readmat:

datatype String Data Format

'double' Double-precision floating point values. 64 bits.

'int16' 16-bit signed integers

'int32' 32-bit signed integers

'single' Single-precision floating point values. 32 bits.

'uint8' Unsigned 8-bit integers

data = readmat(rx,channelname,'datatype',siz) reads a matrix
of data from an RTDX channel configured for read access. datatype
defines the type of data to read, and channelname specifies the queue
to read. readmat reads the desired data from the RTDX link specified
by rx.

Examples In this data read and write example, you write data to the processor
through the CCS IDE. You can then read the data back in two ways —
either through read or through readmsg.

To duplicate this example you need to have a program loaded on the
processor. The channels listed in this example, ichannel and ochannel,
must be defined in the loaded program. If the current program on the
processor defines different channels, replace the listed channels with
your current ones.

cc = ticcs;

rx = cc.rtdx;

open(rx,'ichannel','w');

enable(rx,'ichannel');

7-115

readmat

open(rx,'ochannel','r');

enable(rx,'ochannel');

indata = 1:25; % Set up some data.

write(cc,0,indata,30);

outdata=read(cc,0,'double',25,10)

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the data into a 5-by-5 array called out_array.

out_array = readmat('ochannel','double',[5 5])

See Also readmsg, writemsg

7-116

readmsg

Purpose (For CCS) Read messages from specified RTDX channel

Note Support for readmsg on C5000 and C6000 processors will be
removed in a future version.

Syntax data = readmsg(rx,channelname,'datatype',siz,nummsgs,timeout)
data = readmsg(rx,channelname,'datatype',siz,nummsgs)
data = readmsg(rx,channelname,datatype,siz)
data = readmsg(rx,channelname,datatype,nummsgs)
data = readmsg(rx,channelname,datatype)

Description data = readmsg(rx,channelname,'datatype',siz,nummsgs,timeout)
reads nummsgs from a channel associated with rx. channelname
identifies the channel queue, which must be configured for read access.
Each message is the same type, defined by datatype. nummsgs can be
an integer that defines the number of messages to read from the
specified queue, or all to read all the messages present in the queue
when you call the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. For example, when siz is [m
n], reading 10 messages (nummsgs equal 10) creates 10 m-by-n matrices
in data. Each output matrix in data must have the same number of
elements (m x n) as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports strings that define the type of
data you are expecting, as shown in the following table.

datatype String Specified Data Type

'double' Floating point data, 64-bits
(double-precision).

'int16' Signed 16-bit integer data.

'int32' Signed 32-bit integers.

7-117

readmsg

datatype String Specified Data Type

'single' Floating-point data, 32-bits
(single-precision).

'uint8' Unsigned 8-bit integers.

When you include the timeout input argument in the function, readmsg
reads messages from the specified queue until it receives nummsgs, or
until the period defined by timeout expires while readmsg waits for
more messages to be available.

When the desired number of messages is not available in the queue,
readmsg enters a wait loop and stays there until more messages become
available or timeout seconds elapse. The timeout argument overrides
the global timeout specified when you create rx.

data = readmsg(rx,channelname,'datatype',siz,nummsgs) reads
nummsgs from a channel associated with rx. channelname identifies
the channel queue, which must be configured for read access. Each
message is the same type, defined by datatype. nummsgs can be an
integer that defines the number of messages to read from the specified
queue, or all to read all the messages present in the queue when you
call the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. When siz is [m n], reading 10
messages (nummsgs equal 10) creates 10 n-by-m matrices in data.

Each output matrix in data must have the same number of elements (m
x n) as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports six strings that define the type
of data you are expecting.

data = readmsg(rx,channelname,datatype,siz) reads one data
message because nummsgs defaults to one when you omit the input
argument. readmsgs returns the message as a row vector in data.

7-118

readmsg

data = readmsg(rx,channelname,datatype,nummsgs) reads the
number of messages defined by nummsgs. data becomes a cell array of
row matrices, data = {msg1,msg2,...,msg(nummsgs)}, because siz
defaults to [1,nummsgs]; each returned message becomes one row
matrix in the cell array.

Each row matrix contains one element for each data value in the current
message msg# = [element(1), element(2),...,element(l)] where
l is the number of data elements in message. In this syntax, the read
messages can have different lengths, unlike the previous syntax options.

data = readmsg(rx,channelname,datatype) reads one data
message, returning a row vector in data. All of the optional input
arguments—nummsgs, siz, and timeout—use their default values.

In all calling syntaxes for readmsg, you can set siz and nummsgs to
empty matrices, causing them to use their default values—nummsgs = 1
and siz = [1,l], where l is the number of data elements in the read
message.

Caution If the timeout period expires before the output data matrix is
fully populated, you lose all the messages read from the channel to
that point.

Examples cc = ticcs;

rx = cc.rtdx;

open(rx,'ichannel','w');

enable(rx,'ichannel');

open(rx,'ochannel','r');

enable(rx,'ochannel');

indata = 1:25; % Set up some data.

write(cc,0,indata,30);

outdata=read(cc,0,'double',25,10)

outdata =

7-119

readmsg

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the messages into a 4-by-5 array called
out_array.

number_msgs = msgcount(rx,'ochannel') % Check number of msgs

% in read queue.

out_array = cc.rtdx.readmsg('ochannel','double',[4 5])

See Also read, readmat, writemsg

7-120

regread

Purpose (For CCS) Value from processor register

Syntax reg = regread(cc,'regname','represent',timeout)
reg = regread(cc,'regname','represent')
reg = regread(cc,'regname')

Description reg = regread(cc,'regname','represent',timeout) reads the
data value in the regname register of the processor and returns the
value in reg as a double-precision value. For convenience, regread
converts each return value to the MATLAB software double datatype.
Making this conversion lets you manipulate the data in MATLAB
software. String regname specifies the name of the source register on
the processor. ticcs object cc defines the processor to read from. Valid
entries for regname depend on your processor. Register names are not
case-sensitive — a0 is the same as A0.

For example, the TMS320C6xxx processor family provides the following
register names that are valid entries for regname:

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR,
CSR

Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register pairs

Other processors provide other register sets. Refer to the documentation
for your processor to determine the registers for the processor.

Note Use read (called a direct memory read) to read memory-mapped
registers.

7-121

regread

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings:

represent String Description

'2scomp' Source register contains a signed integer value
in two’s complement format. This is the default
setting when you omit the represent argument.

'binary' Source register contains an unsigned binary
integer.

'ieee' Source register contains a floating point 32-bit
or 64-bit value in IEEE floating-point format.
Use this only when you are reading from 32 and
64 bit registers on the processor.

To limit the time that regread spends transferring data from the
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the read operation. You might find this
useful for limiting prolonged data transfer operations. If you omit the
timeout option in the syntax, regread defaults to the global timeout
defined in cc.

reg = regread(cc,'regname','represent') does not set the global
timeout value. The timeout value in cc applies.

reg = regread(cc,'regname') does not define the format of the data
in regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned

7-122

regread

later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for local variables as well.

One way to see this is to write a line of code that uses the variable and
see if the result is consistent.

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link software.

Examples For the C5xxx processor family, most registers are memory-mapped
and consequently are available using read and write. However, use
regread to read the PC register. The following command demonstrates
how to read the PC register. To identify the processor, cc is a link for
CCS IDE.

cc.regread('PC','binary')

To tell MATLAB software what datatype you are reading, the string
binary indicates that the PC register contains a value stored as an
unsigned binary integer.

In response, MATLAB software displays

ans =

33824

7-123

regread

For processors in the C6xxx family, regread lets you access processor
registers directly. To read the value in general purpose register A0,
type the following function.

treg = cc.regread('A0','2scomp');

treg now contains the two’s complement representation of the value
in A0.

Now read the value stored in register B2 as an unsigned binary integer,
by typing

cc.regread('B2','binary');

See Also read, regwrite, write

7-124

regwrite

Purpose (For CCS) Write data values to registers on processor

Syntax regwrite(cc,'regname',value,'represent',timeout)
regwrite(cc,'regname',value,'represent')
regwrite(cc,'regname',value,)

Description regwrite(cc,'regname',value,'represent',timeout) writes the
data in value to the regname register of the processor. regwrite
converts value from its representation in the MATLAB workspace
to the representation specified by represent. The represent input
argument defines the format of the data when it is stored in regname.
Input argument represent takes one of three input strings:

represent String Description

'2scomp' Write value to the destination register as
a signed integer value in two’s complement
format. This is the default setting when you
omit the represent argument.

'binary' Write value to the destination register as an
unsigned binary integer.

'ieee' Write value to the destination registers as a
floating point 32-bit or 64-bit value in IEEE
floating-point format. Use this only when
you are writing to 32- and 64-bit registers on
the processor.

Note Use write (called a direct memory write) to write memory-mapped
registers.

String regname specifies the name of the destination register on
the processor. cc defines the processor to write value to. Valid
entries for regname depend on your processor. Register names are
not case-sensitive — a0 is the same as A0. For example, the C6xxx

7-125

regwrite

processor family provides the following register names that are valid
entries for regname:

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP,
NRP, AMR, CSR

Other general purpose 32-bit registers

A1:A0, A2:A1,...,
B15:B14

64-bit general purpose register pairs

Other processors provide other register sets. Refer to the documentation
for your processor to determine the registers for the processor.

To limit the time that regwrite spends transferring data to the
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the write operation. You might find this
useful for limiting prolonged data transfer operations.

If you omit the timeout input argument in the syntax, regwrite
defaults to the global timeout defined in cc. If the write operation
exceeds the time specified, regwrite returns with a timeout error.
Generally, timeout errors do not stop the register write process. The
write process stops while waiting for CCS IDE to respond that the write
operation is complete.

regwrite(cc,'regname',value,'represent') omits the timeout
input argument and does not change the timeout value specified in cc.

regwrite(cc,'regname',value,) omits the represent input
argument. Writing the data does not reformat the data written to
regname.

7-126

regwrite

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned
later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for any local variables as well.

One way to see this is to write a line of code that uses the variable and
see if result is consistent.

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link software.

Examples To write a new value to the PC register on a C5xxx family processor,
enter

regwrite(cc,'pc',hex2dec('100'),'binary')

specifying that you are writing the value 256 (the decimal value of
0x100) to register pc as binary data.

To write a 64-bit value to a register pair, such as B1:B0, the following
syntax specifies the value as a string, representation, and processor
registers.

7-127

regwrite

regwrite(cc,'b1:b0',hex2dec('1010'),'ieee')

Registers B1:B0 now contain the value 4112 in double-precision format.

See Also read, regread, write

7-128

reload

Purpose (For CCS) Reload most recent program file to processor signal processor

Syntax s = reload(cc,timeout)
s = reload(cc)

Description s = reload(cc,timeout) resends the most recently loaded program
file to the processor. If you have not loaded a program file in the
current session (so there is no previously loaded file), reload returns
the null entry [] in s indicating that it could not load a file to the
processor. Otherwise, s contains the full path name to the program file.
After you reset your processor or after any event produces changes in
your processor memory, use reload to restore the program file to the
processor for execution.

To limit the time CCS IDE spends trying to reload the program file to
the processor, timeout specifies how long the load process can take. If
the load process exceeds the timeout limit, CCS IDE stops trying to
load the program file and returns an error stating that the time period
expired. Exceeding the allotted time for the reload operation usually
indicates that the reload was successful but CCS IDE did not receive
confirmation before the timeout period passed.

s = reload(cc) reloads the most recent program file, using the
timeout value set when you created link cc, the global timeout setting.

Using reload with Multiprocessor Boards

When your board contains more than one processor, reload calls the
reloading function for each processor represented by cc, reloading the
most recently loaded program on each processor.

This is the same as calling reload for each processor individually
through ticcs objects for each one.

Examples After you create an object that connects to CCS, use the available
methods to reload your most recently loaded project. If you have not
loaded a project in this session, reload returns an error and an empty
value for s. Loading a project eliminates the error.

7-129

reload

cc=ticcs;

s=reload(cc,23)

Warning: No action taken - load a valid Program file before

you reload...

s =

''

open(cc,'D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt',...

'project')

build(cc)

load(cc,'hellodsp.pjt')

halt(cc)

s=reload(cc,23)

s =

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

See Also cd, load, open

7-130

remove

Purpose (For CCS) Remove file from active CCS IDE project

Syntax remove(cc,'filename')
remove(cc,'gelfilename')

Description remove(cc,'filename') deletes the file specified by filename from
the active project in CCS IDE. You can remove files that exist in the
active project only. filename must match the name of an existing file
exactly to remove the file.

remove(cc,'gelfilename') deletes the file specified by gelfilename
from the active project in CCS IDE. You can remove files that exist
in the active project only. gelfilename must match the name of an
existing file exactly to remove the file.

Examples After you have a project in CCS IDE, you can delete files from it using
remove from the MATLAB software command line. For example, build a
project and load the resulting .out file. With the project build complete,
load your .out file by typing

load(cc,'filename.out')

Now remove one file from your project, such as the GEL file.

remove(cc,'gelfilename')

You see in CCS IDE that the GEL file no longer appears in the GEL
files folder in CCS.

See Also activate, add, cd, open

7-131

reset

Purpose (For CCS) Reset processor

Syntax reset(cc,timeout)
reset(cc)

Description reset(cc,timeout) stops program execution on the processor and
asynchronously performs a processor reset, returning all processor
register contents to their power up settings. The reset function returns
after the processor halts.

To allow you to determine how long reset waits for the processor to
halt, input option timeout lets you set the waiting period in seconds.
After you use reset, the routine returns after the processor halts or
after timeout seconds elapses, whichever comes first.

reset(cc) stops program execution on the processor and
asynchronously performs a processor reset, returning all processor
register contents to their power up settings. The reset function returns
after the processor halts. reset uses the global timeout value defined
in cc to determine how long to wait for the processor to halt before
returning. Use get to examine the global timeout value for the link.

Use run to restart the program loaded on the processor.

Compare to halt which does not reset the processor after the program
stops running.

Using reset with Multiprocessor Boards

When your board contains more than one processor, reset calls the
processor resetting function for each processor represented by cc,
resetting each processor.

This is the same as calling reset for each processor individually
through ticcs objects for each one.

Note that the run and halt methods still apply as mentioned earlier
in this section.

See Also halt, restart, run

7-132

restart

Purpose (For CCS) Restore program counter to entry point for current program

Syntax restart(cc,timeout)
restart(cc)

Description restart(cc,timeout) halts the processor immediately and resets
the program counter (PC) to the program entry point for the loaded
program. Use run to execute the program after you use restart.
restart does not execute the program after resetting the PC. timeout
allows you to specify how long restart waits for the processor to stop
and return the PC to the program entry point. Specify the value for
timeout in seconds. After you use restart, the restart routine returns
after resetting the PC or after timeout seconds elapse, whichever comes
first. If the timeout period expires, restart returns a timeout error.

restart(cc) halts the processor immediately and resets the PC to the
program entry point for the loaded program. Use run to execute the
program after you use restart. restart does not execute the program
after resetting the PC. When you omit the timeout argument, restart
uses the global default timeout period defined in cc to determine how
long to wait for the processor to stop and the PC to be reset to the
program entry point.

Using restart with Multiprocessor Boards

When your board contains more than one processor, restart calls the
processor restarting function for each processor represented by cc,
restarting the program loaded on each processor.

This is the same as calling restart for each processor individually
through ticcs objects for each one.

Examples When you are developing algorithms for your processor, restart
becomes a particularly useful function. Rather than resetting the
processor after each algorithm test, use the restart function to return
the program counter to the program entry point. Because restart
restores your local variables to their initial settings, but does not reset
the processor, you are ready to rerun your algorithm with new values.

7-133

restart

When your process gets lost or halts, restart is a quick way to restore
your program.

See Also halt, isrunning, run

7-134

run

Purpose (For CCS) Execute program loaded on processor

Syntax run(cc,'state',timeout)
run(cc,'main')
run(cc,'tofunc','functionname')

Description run(cc,'state',timeout) starts to execute the program loaded on the
processor referred to by cc. Program execution starts from the location
of the program counter. After starting program execution, the input
argument state determines when you regain program control.

To define the action of run, state accepts strings that set the state
of the processor:

state String Run Action

'main' Reset the program counter then run the
program until the PC reaches main. Stop at
main.

'run' Start to execute the program. Wait until
the program is running, then return. The
program continues to run. If you omit the state
argument, run defaults to this setting. Sets
the processor to the running state and returns.
This is useful when you want to continue to
work in MATLAB software while the processor
executes a program.

'runtohalt' Start to execute the program. Wait to return
until the program encounters a breakpoint or
the program execution terminates. Sets the
processor to the running state and returns
when the processor halts.

7-135

run

state String Run Action

'tofunc' Run the program from the current position of
the program counter to the start of a specified
function functionname.

'tohalt' Changes the state of a running process to
runtohalt, and waits for the processor to halt
before returning. Use this when you want to
stop a running process cleanly. If the processor
is already stopped when you use this state
setting, run returns immediately.

The timeout input argument specifies how long MATLAB software
waits for the connection to the processor or the response to a command
to return completed.

After you use run, the routine returns after confirming that the program
started to execute, or after timeout seconds elapses, whichever comes
first. If the timeout period expires, run returns a timeout error.

run(cc,'main') resets the program counter in your project then runs
the program linked to cc until the counter reaches the start of main.

run(cc,'tofunc','functionname') runs the program from the
current position of the program counter until the counter reaches the
function functionname. Compare this to run(cc,'main') which resets
the program counter before executing the program. Using the tofunc
option does not reset the program counter.

Using run with Multiprocessor Boards

When your board contains more than one processor, run calls the
program running function for each processor represented by cc, running
the program loaded on each processor.

This is the same as calling run for each processor individually through
ticcs objects for each one. The other information about run on a single
processor applies to each processor in the multiple processor cases.

7-136

run

Examples After you build and load a program to your processor, use run to start
execution.

cc = ticcs('boardnum',0,'procnum',0); % Create a link to CCS

% IDE.

cc.load('tutorial_6xevm.out'); % Load an executable file to the

% processor.

cc.rtdx.configure(1024,4); % Configure four buffers for data

% transfer needs.

cc.rtdx.open('ichan','w'); % Open RTDX channels for read and

% write.

cc.rtdx.enable('ichan');

cc.rtdx.open('ochan','r');

cc.rtdx.enable('ochan');

cc.restart; % Return the PC to the beginning of the current

% program.

cc.run('run'); % Run the program to completion.

This example uses a tutorial program included with Embedded IDE
Link. Set your CCS IDE working directory to be the one that holds
your project files. The load function uses the current working directory
unless you provide a full path name in the input arguments.

Rather than using the dot notation to access the RTDX functions, you
can create an alias to the cc link and use the alias in later commands.
Thus, if you add the line

rx = cc.rtdx;

to the program, you can replace

cc.rtdx.configure(1024,4);

with

7-137

run

configure(rx,1024,4);

See Also halt, isrunning, restart

7-138

save

Purpose (For CCS) Save files and projects in CCS IDE

Note save(cc,filename,'text') produces an error.

Syntax save(cc,'filename','type')

Description save(cc,'filename','type') save the file in CCS IDE identified by
filename of type ’type’. type identifies the type of file to save, either
project files when you use ’project' for type, or text files when you use
'text' for the type option. To save a specific file in CCS IDE, filename
must match the name of the file to save exactly. If you replace filename
with 'all', save writes every open file whose type matches the type
option. File types recognized by save include these extensions.

type String Affected files

'project' Project files with the .pjt extension.

'text' All files with these extensions — a*, .c, .cc, .ccx,
.tcf, .cmd, .cpp, .lib, .o*, .rcp, and .s*. Note that
'text' does not save .cfg files.

When you replace filename with the null entry [], save writes to
storage the current active file window in CCS IDE, or the active project
when you specify project for the type option.

Examples To clarify the different save options, here are commands that save open
files or projects in CCS IDE.

Command Result

save(cc,'all','project') Save all open projects in
CCS IDE.

save(cc,'my.pjt','project') Save the project my.pjt.

save(cc,[],project') Save the active project.

7-139

save

Command Result

save(cc,'all','text') Save all open text files.
Includes source files, libraries,
command files, and others.

save(cc,'my_source.cpp','text') Save the text file
my_source.cpp.

save(cc,[],'text') Save the active file window.

See Also add, cd, close, open

7-140

symbol

Purpose (For CCS) Program symbol table from CCS IDE

Syntax s = symbol(cc)

Description s = symbol(cc) returns the symbol table for the program loaded in
CCS IDE. symbol only applies after you load a processor program file.
s is an array of structures where each row in s presents the symbol
name and address in the table. Therefore, s has two columns; one is
the symbol name, and the other is the symbol address and symbol page.
For example, this table shows a few possible elements of s, and their
interpretation.

s Structure Field Contents of the Specified Field

s(1).name String reflecting the symbol entry name.

s(1).address(1) Address or value of symbol entry.

s(1).address(2) Memory page for the symbol entry. For TI
C6xxx processors, the page is 0.

You can use field address in s as the address input argument to read
and write.

It you use symbol and the symbol table does not exist, s returns empty
and you get a warning message.

Symbol tables are a portion of a COFF object file that contains
information about the symbols that are defined and used by the file.
When you load a program to the processor, the symbol table resides in
CCS IDE. While CCS IDE may contain more than one symbol table
at a time, symbol accesses the symbol table belonging to the program
you last loaded on the processor.

Examples Demonstrating this function requires that you load a program file to
your processor. In this example, build and load Embedded IDE Link
demo program c6711dskafxr. Start by entering c6711dskafxr at the
MATLAB software prompt.

7-141

symbol

c6711dskafxr;

Now set the simulation parameters for the model and build the model to
your processor. With the model loaded on your processor, use symbol to
return the entries stored in the symbol table in CCS IDE.

cc = ticcs;
s = symbol(cc);

s contains all the symbols and their addresses, in a structure you can
display with the following code:

for k=1:length(s),disp(k),disp(s(k)),end;

MATLAB software lists the symbols from the symbol table in a column.

See Also load, run

7-142

ticcs

Purpose (For CCS) Create object that refers to CCS IDE

Syntax cc = ticcs
cc = ticcs('propertyname’,'propertyvalue’,...)

Description cc = ticcs returns a ticcs object in cc that MATLAB software uses
to communicate with the default processor. In the case of no input
arguments, ticcs constructs the object with default values for all
properties. CCS IDE handles the communications between MATLAB
software and the selected CPU. When you use the function, ticcs starts
CCS IDE if it is not running. If ticcs opened an instance of the CCS
IDE when you issued the ticcs function, CCS IDE becomes invisible
after Embedded IDE Link creates the new object.

Note When ticcs creates the object cc, it sets the working directory for
CCS IDE to be the same as your MATLAB software working directory.
When you create files or projects in CCS IDE, or save files and projects,
this working directory affects where you store the files and projects.

Each object that accesses CCS IDE comprises two objects—a ticcs
object and an rtdx object—that include the following properties.

Object Property Name Property Default Description

'apiversion' API version N/A Defines the API version
used to create the link

'proctype' Processor
Type

N/A Specifies the kind of
processor on the board

'procname' Processor
Name

CPU Name given to the
processor on the board
to which this object links

ticcs

7-143

ticcs

Object Property Name Property Default Description

'status' Running No Status of the program
currently loaded on the
processor

'boardnum' Board
Number

0 Number that CCS assigns
to the board. Used to
identify the board

'procnum' Processor
number

0 Number the CCS assigns
to a processor on a board

'timeout' Default
timeout

10.0 s Specifies how long
MATLAB software waits
for a response from CCS
after issuing a request.
This also applies when
you try to construct a
ticcs object. The create
process waits for this
timeout period for the
connection to the processor
to complete. If the timeout
period expires, you get an
error message that the
connection to the processor
failed and MATLAB
software could not create
the ticcs object.

7-144

ticcs

Object Property Name Property Default Description

'timeout' Timeout 10.0 s Specifies how long CCS
waits for a response
from the processor after
requesting data

rtdx

'numchannels' Number
of open
channels

0 The number of open
channels using this link

type type Defined
types in the
object

Void,
Float,
Double,
Long,
Int,
Short,
Char

List of the C data types
in the project cc accesses.
Use add to include your
C type definitions to the
list

cc = ticcs('propertyname’,'propertyvalue’,...) returns a handle
in cc that MATLAB software uses to communicate with the specified
processor. CCS handles the communications between the MATLAB
environment and the CPU.

MATLAB software treats input parameters to ticcs as property
definitions. Each property definition consists of a property
name/property value pair.

Two properties of the ticcs object are read only after you create the
object:

• 'boardnum' — the identifier for the installed board selected from
the active boards recognized by CCS. If you have one board, use the
default property value 0 to access the board.

• 'procnum'— the identifier for the processor on the board defined by
boardnum. On boards with more than one processor, use this value to
specify the processor on the board. On boards with one processor, use
the default property value 0 to specify the processor.

7-145

ticcs

Given these two properties, the most common forms of the ticcs
method are

cc = ticcs('boardnum',value)

cc = ticcs('boardnum',value,'procnum',value)

cc = ticcs(...,'timeout',value)

which specify the board, and processor in the second example, as the
processor.

The third example adds the timeout input argument and value to allow
you to specify how long MATLAB software waits for the connection to
the processor or the response to a command to return completed.

Note The output argument name you provide for ticcs cannot begin
with an underscore, such as _cc.

You do not need to specify the boardnum and procnum properties when
you have one board with one processor installed. The default property
values refer correctly to the processor on the board.

Note Simulators are considered boards. If you defined both boards and
simulators in CCS IDE, specify the boardnum and procnum properties
to connect to specific boards or simulators. Use ccsboardinfo to
determine the values for the boardnum and procnum properties.

Because these properties are read only after you create the handle,
you must set these property values as input arguments when you use
ticcs. You cannot change these values after the handle exists. After
you create the handle, use the get function to retrieve the boardnum
and procnum property values.

7-146

ticcs

Using ticcs with Multiple Processor Boards

When you create ticcs objects that access boards that contain more
than one processor, such as the OMAP1510 platform, ticcs behaves
a little differently.

For each of the ticcs syntaxes above, the result of the method changes
in the multiple processor case, as follows.

cc = ticcs

cc = ticcs('propertyname',propertyvalue)

cc = ticcs('propertyname',propertyvalue,'propertyname',...

propertyvalue)

In the case where you do not specify a board or processor:

cc = ticcs

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 0

Processor 0 (element 1): TMS470R2127 (MPU, Not Running)

Processor 1 (element 2): TMS320C5500 (DSP, Not Running)

Where you choose to identify your processor as an input argument to
ticcs, for example, when your board contains two processors:

cc = ticcs('boardnum',2)

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

cc returns a two element object handle with cc(1) corresponding to the
first processor and cc(2) corresponding to the second.

7-147

ticcs

You can include both the board number and the processor number in
the ticcs syntax, as shown here:

cc = ticcs('boardnum',2,'procnum',[0 1])

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Enter procnum as either a single processor on the board (a single value
in the input arguments to specify one processor) or a vector of processor
numbers, as shown in the example, to select two or more processors.

Support Coemulation and OMAP

Coemulation, defined by Texas Instruments to mean simultaneous
debugging of two or more CPUs, allows you to coordinate your debugging
efforts between two or more processors within one device. Efficient
development with OMAP™ hardware requires coemulation support.
Instead of creating one cc object when you issue the following command

cc = ticcs

or your hardware that has multiple processors, the resulting cc object
comprises a vector of cc objects cc(1), cc(2), and so on, each of which
accesses one processor on your device, say an OMAP1510. When your
processor has one processor, cc is a single object. With a multiprocessor
board, the cc object returns the new vector of objects. For example,
for board 2 with two processors,

cc = ticcs

returns the following information about the board and processors:

cc = ticcs('boardnum',2)

Array of TICCS Objects:

7-148

ticcs

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Checking the existing boards shows that board 2 does have two
processors:

ccsboardinfo

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ---------------

2 OMAP 3.0 Platform Simulator [T ... 0 MPU TMS470R2x

2 OMAP 3.0 Platform Simulator [T ... 1 DSP TMS320C550

1 MGS3 Simulator [Texas Instruments] 0 CPU TMS320C5500

0 ARM925 Simulator [Texas Instru ... 0 CPU TMS470R2x

Examples On a system with three boards, where the third board has one processor
and the first and second boards have two processors each, the following
function:

cc = ticcs('boardnum',1,'procnum',0);

returns an object that accesses the first processor on the second board.
Similarly, the function

cc = ticcs('boardnum',0,'procnum',1);

returns an object that refers to the second processor on the first board.

To access the processor on the third board, use

cc = ticcs('boardnum',2);

7-149

ticcs

which sets the default property value procnum= 0 to connect to the
processor on the third board.

cc = ticcs

TICCS Object:

API version : 1.2

Processor type : TMS320C6711

Processor name : CPU_1

Running? : No

Board number : 1

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

cc.type % Returns information about the type object

Defined types : Void, Float, Double, Long, Int, Short, Char

See Also ccsboardinfo, set

7-150

visible

Purpose (For CCS) Set whether CCS IDE window is visible while CCS runs

Syntax visible(cc,state)

Description visible(cc,state) sets CCS IDE to be visible or not visible on the
desktop. Input argument state accepts either 0 or 1 to set the visibility.
Setting state equal to 0 makes CCS IDE not visible on the desktop.
However, the CCS IDE process runs in the background while the
window is not visible.

Running CCS IDE without making it visible lets you use the CCS IDE
functions from MATLAB software, without interacting with CCS IDE.
If you need to interact with CCS IDE, set state equal to 1. This makes
CCS IDE visible and you can use the features of the user window.

An important feature of visible is that it creates a new link to CCS
IDE when you change the IDE visibility. As a result, after you use

visible(cc,state)

to make CCS IDE show on your desktop, the MATLAB software clear
all function does not remove the visibility handle. You must remove
the handle explicitly before you use clear.

To see the visibility difference, open CCS and use Microsoft Windows
Task Manager to look at the applications and processes running on your
computer. When CCS IDE is visible (the normal startup and operating
mode for the IDE), CCS IDE appears listed on the Applications
page of Task Manager. And the process cc_app.exe shows up on the
Processes page as a running process. When you set CCS IDE to not
visible (state equal 0), CCS IDE disappears from the Applications
page, but remains on the Processes page, with a process ID (PID),
using CPU and memory resources.

Note When you close MATLAB software while CCS IDE is not visible,
MATLAB software closes CCS if it started the IDE.

7-151

visible

For more information about visibility and CCS, refer to “Running Code
Composer Studio Software on Your Desktop — Visibility” on page 2-5.

Examples Test to see whether CCS IDE is running. Then change the visibility
and check again. Start CCS IDE. Then open MATLAB software and
at the prompt, enter

cc=ticcs;

MATLAB software creates a link to CCS IDE and leaves CCS IDE
visible on your desktop.

isvisible(cc)

ans =
1

Now, change the visibility state to 0, or invisible, and check the state.

visible(cc,0)
isvisible(cc)

ans =
0

Notice that CCS IDE is not visible on your desktop. Recall that
MATLAB software did not open CCS IDE. When you close MATLAB
software with CCS IDE in this invisible state, CCS IDE remains
running in the background. To close it, do one of the following
operations.

• Start MATLAB software. Create a new link to CCS IDE. Use the new
link to make CCS IDE visible. Close CCS IDE.

• Open Microsoft Windows Task Manager. Click Processes. Find and
highlight cc_app.exe. Click End Task.

See Also isvisible, load

7-152

write

Purpose (For CCS) Write data to memory on processor

Syntax write(cc,address,data,timeout)
write(cc,address,data)

Description ticcs Object Syntaxes

write(cc,address,data,timeout) sends a block of data to memory on
the processor referred to by cc. The address and data input arguments
define the memory block to write—where the memory starts and what
data is being written. The memory block to write to begins at the
memory location defined by address. data is the data to write, and can
be a scalar, a vector, a matrix, or a multidimensional array.

Data get written to memory in column-major order. timeout is an
optional input argument you use to terminate long write processes
and data transfers. For details about each input parameter, read the
following descriptions.

To update values in memory on a running processor, such as values
to change during processing, insert one or more breakpoints in the
project code and perform the write operation while the processor code
is paused at one of the breakpoints. After you read the data, release
the breakpoint.

Note

Do not attempt to write data to the processor while it is running.
Writing data to a running process can result in incorrect data in
memory or in program use.

address— write uses address to define the beginning of the memory
block to write to. You provide values for address as either decimal or
hexadecimal representations of a memory location in the processor.
The full address at a memory location consists of two parts: the offset
and the memory page, entered as a vector [location, page], a string,
or a decimal value.

7-153

write

When the processor has only one memory page, as is true for many
digital signal processors, the value of the page portion of the memory
address is 0. By default, ticcs sets the page value to 0 at creation if
you omit page as an input argument.

For processors that have one memory page, setting the page value to 0
lets you specify all memory locations in the processor using the memory
location without the page value.

Examples of Address Property Values

Property Value Address Type Interpretation

1F String Offset is 31 decimal on the
page referred to by cc.page

10 Decimal Offset is 10 decimal on the
page referred to by cc.page

[18,1] Vector Offset is 18 decimal
on memory page 1
(cc.page = 1)

To specify the address in hexadecimal format, enter the address
property value as a string. write interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the write uses hex2dec. When you
use the string option to enter the address as a hex value, you cannot
specify the memory page. For string input, the memory page defaults to
the page specified by cc.page..

data— the scalar, vector, or array of values that are written to memory
on the processor. write supports the following data types:

Datatypes Description

double Double-precision floating point values

int8 Signed 8-bit integers

7-154

write

Datatypes Description

int16 Signed 16-bit integers

int32 Signed 32-bit integers

single Single-precision floating point data

uint8 Unsigned 8-bit integers

uint16 Unsigned 16-bit integers

uint32 Unsigned 32-bit integers

To limit the time that write spends transferring data from the
processor, the optional argument timeout tells the data transfer
process to stop after timeout seconds. timeout out is defined as the
number of seconds allowed to complete the write operation. You may
find this useful for limiting prolonged data transfer operations. If you
omit the timeout option in the syntax, write defaults to the global
timeout defined in cc.

write(cc,address,data) sends a block of data to memory on the
processor referred to by cc. The address and data input arguments
define the memory block to be written—where the memory starts and
what data is being written. The memory block to be written to begins at
the memory location defined by address. data is the data to be written,
and can be a scalar, a vector, a matrix, or a multidimensional array.

Data get written to memory in column-major order. Refer to the
preceding syntax for details about the input arguments. In this syntax,
timeout defaults to the global timeout period defined in cc.timeout.
Use get to determine the default timeout value.

Like the isreadable, iswritable, and read functions, write checks
for valid address values. Illegal address values would be any address
space larger than the available space for the processor – 232 for the
C6xxx processor family and 216 for the C5xxx series. When the function
identifies an illegal address, it returns an error message stating that
the address values are out of range.

7-155

write

Writing Negative Values

Writing a negative value causes the data written to be saturated
because char is unsigned on the processor. Hence, a 0 (a NULL) is
written instead. A warning results as well, as this example shows.

cc = ticcs;

ff = createobj(cc,'g_char'); % Where g_char is in the code.

write(ff,-100);

Warning: Underflow: Saturation was required to fit the data into

an addressable unit.

When you try to read the data you wrote, the character being read is
0 (NULL) — so there seems to be nothing returned by the read function.

You can demonstrate this by the following code, after writing a negative
value as shown in the previous example.

readnumeric(x)
ans =
0
read(x) % Reads the NULL character.
ans = % Apparently nothing is returned.

double(read(x)) % Read the numeric equivalent of NULL.
ans = % Again, appears not to return a value.

Examples The following examples demonstrate how to use write. cc is a ticcs
object.

Connect to a processor and write data to it. In this example, CCS IDE
recognizes one board having one processor.

cc = ticcs;

cc.visible(1);

write(cc,'50',1:250);

mem = read(cc,0,'double',50) % Returns 50 values as a column

% vector in mem.

7-156

write

It may be more convenient to return the data in an array. If you enter
a vector for count, mem contains a matrix of dimensions the same as
vector count.

write(cc,10,1:100);

mem=read(cc,10,'double',[10 10])

mem =

1 11 21 31 41 51 61 71 81 91

2 12 22 32 42 52 62 72 82 92

3 13 23 33 43 53 63 73 83 93

4 14 24 34 44 54 64 74 84 94

5 15 25 35 45 55 65 75 85 95

6 16 26 36 46 56 66 76 86 96

7 17 27 37 47 57 67 77 87 97

8 18 28 38 48 58 68 78 88 98

9 19 29 39 49 59 69 79 89 99

10 20 30 40 50 60 70 80 90 100

Write an array of 16–bit integers at the location of target symbol data.

write(cc,address(h,'data'),int16([1:100]))

Write a single-precision, IEEE floating-point value (32-bits) at address
FF00(Hex).

write(cc,'FF00',single(23.5))

Write a 2-D array of integers in row-major (C-style) format at address
65280 (decimal).

mlarr = int32([1:10; 101:110])
write(cc,65280,mlarr')

See Also read, symbol

7-157

writemsg

Purpose (For CCS) Write messages to specified RTDX channel

Note Support for writemsg on C5000 and C6000 processors will be
removed in a future version.

Syntax data = writemsg(rx,channelname,data)
data = writemsg(rx,channelname,data)

Description data = writemsg(rx,channelname,data) writes data to a channel
associated with rx. channelname identifies the channel queue, which
must be configured for write access. All messages must be the same
type for a single write operation. writemsg takes the elements of matrix
data in column-major order.

To limit the time that writemsg spends transferring messages from the
processor, the optional argument timeout tells the message transfer
process to stop after timeout seconds. timeout is defined as the number
of seconds allowed to complete the write operation. You may find this
useful for limiting prolonged data transfer operations. If you omit the
timeout option in the syntax, write defaults to the global timeout
period defined in cc.

writemsg supports the following data types: uint8, int16, int32,
single, and double.

data = writemsg(rx,channelname,data) uses the global timeout
setting assigned to cc when you create the link.

Examples After you load a program to your processor, configure a link in RTDX
for write access and use writemsg to write data to the processor. Recall
that the program loaded on the processor must define ichannel and the
channel must be configured for write access.

cc=ticcs;

rx = cc.rtdx;

open(rx,'ichannel','w'); % Could use rx.open('ichannel','w')

7-158

writemsg

enable(rx,'ichannel');

inputdata(1:25);

writemsg(rx,'ichannel',int16(inputdata));

As a further illustration, the following code snippet writes the messages
in matrix indata to the write-enabled channel specified by ichan.
Note again that this example works only when ichan is defined by the
program on the processor and enabled for write access.

indata = [1 4 7; 2 5 8; 3 6 9];
writemsg(cc.rtdx,'ichan',indata);

The matrix indata is written by column to ichan. The preceding
function syntax is equivalent to

writemsg(cc.rtdx,'ichan',[1:9]);

See Also readmat, readmsg, write

7-159

writemsg

7-160

8

Block Reference

8 Block Reference

Block Library: idelinklib_ticcs

C280x/C2802x/C2803x/C28x3x
Hardware Interrupt

Interrupt Service Routine to
handle hardware interrupt on
C280x/C28x3x processors

C281x Hardware Interrupt Interrupt Service Routine to handle
hardware interrupt

C5000/C6000 Hardware Interrupt Interrupt Service Routine to handle
hardware interrupt on C5000 and
C6000 processors

8-2

Block Library: idelinklib_common

Block Library: idelinklib_common
Idle Task Create free-running task

Memory Allocate Allocate memory section

Memory Copy Copy to and from memory section

8-3

8 Block Reference

8-4

9

Blocks — Alphabetical List

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on
C280x/C28x3x processors

Library Embedded IDE Link for TI Code Composer Studio (idelinklib_ticcs)

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C280x/C28x3x Hardware Interrupt block addresses this
problem by allowing asynchronous processing of interrupts triggered
by events managed by other blocks in the C280x/C28x3x DSP Chip
Support Library.

The following C280x/C28x3x blocks that can generate an interrupt for
asynchronous processing are available in Target Support Package.

• C280x ADC

• C280x eCAN Receive

• C280x SCI Receive

• C280x SCI Transmit

• C280x SPI Receive

• C280x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each
interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.
Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

9-2

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

Each interrupt is described by:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts.

9-3

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

C
2

8
0

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

R
o
w

n
u
m

b
er

s
=

C
P
U

va
lu

es
/C

o
lu

m
n

n
u
m

b
er

s
=

P
IE

va
lu

es

8
7

6
5

4
3

2
1

1
W

A
K

E
IN

T

(L
P

M
/W

D
)

T
IN

T
0

(T
IM

E
R

0
)

A
D

C
IN

T

(A
D

C
)

X
IN

T
2

X
IN

T
1

R
es

er
ve

d
S

E
Q

2I
N

T

(A
D

C
)

S
E

Q
1I

N
T

(A
D

C
)

2
R

es
er

ve
d

R
es

er
ve

d
E

P
W

M
6_

T
Z

IN
T

(e
P

W
M

6)

E
P

W
M

5_
T

Z
IN

T

(e
P

W
M

5)

E
P

W
M

4_
T

Z
IN

T

(e
P

W
M

4)

E
P

W
M

3
_

T
Z

IN
T

(e
P

W
M

3)

E
P

W
M

2_
T

Z
IN

T

(e
P

W
M

2)

E
P

W
M

1
_T

Z
IN

T

(e
P

W
M

1
)

3
R

es
er

ve
d

R
es

er
ve

d
E

P
W

M
6_

IN
T

(e
P

W
M

6)

E
P

W
M

5_
IN

T

(e
P

W
M

5)

E
P

W
M

4
_

IN
T

(e
P

W
M

4)

E
P

W
M

3
_

IN
T

(e
P

W
M

3)

E
P

W
M

2_
IN

T

(e
P

W
M

2)

E
P

W
M

1
_I

N
T

(e
P

W
M

1
)

4
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
E

C
A

P
4_

IN
T

(e
C

A
P

4)

E
C

A
P

3_
IN

T

(e
C

A
P

3)

E
C

A
P

2
_I

N
T

(e
C

A
P

2
)

E
C

A
P

1_
IN

T

(e
C

A
P

1)

5
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
E

Q
E

P
2_

IN
T

(e
Q

E
P

2)

E
Q

E
P

1_
IN

T

(e
Q

E
P

1)

6
S

P
IT

X
IN

T
D

(S
P

I-
D

)

S
P

IR
X

IN
T

D

(S
P

I-
D

)

S
P

IT
X

IN
T

C

(S
P

I-
C

)

S
P

IR
X

IN
T

C

(S
P

I-
C

)

S
P

IT
X

IN
T

B

(S
P

I-
B

)

S
P

IR
X

IN
T

B

(S
P

I-
B

)

S
P

IT
X

IN
TA

(S
P

I-
A

)

S
P

IR
X

IN
TA

(S
P

I-
A

)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

e
se

rv
e

d
R

es
er

ve
d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
I2

C
IN

T
1A

(I
2C

-A
)

I2
C

IN
T

2A

(I
2C

-A
)

9
E

C
A

N
1

IN
T

B

(C
A

N
-B

)

E
C

A
N

0I
N

T
B

(C
A

N
-B

)

E
C

A
N

1I
N

TA

(C
A

N
-A

)

E
C

A
N

0I
N

TA

(C
A

N
-A

)

S
C

IT
X

IN
T

B

(S
C

I-
B

)

S
C

IR
X

IN
T

B

(S
C

I-
B

)

S
C

IT
X

IN
TA

(S
C

I-
A

)

S
C

IR
X

IN
TA

(S
C

I-
A

)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

e
se

rv
e

d
R

es
er

ve
d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

e
se

rv
e

d
R

es
er

ve
d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

e
se

rv
e

d
R

es
er

ve
d

9-4

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. The default
priority value of the base rate task is 40, so the priority value for each
asynchronously triggered task must be less than 40 for these tasks to
suspend the base rate task.

The preemption flag determines whether a given interrupt is
preemptable. Preemption overrides prioritization, such that
a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

Dialog
Box

CPU interrupt numbers
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

9-5

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

See the table of C280x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

PIE interrupt numbers
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C280x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

Simulink task priorities
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 9-2
for an explanation of task priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 9-2
for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink software
model.

Note Select this check box to enable you to test asynchronous
interrupt processing behavior in Simulink software.

References Detailed information about interrupt processing is in TMS320x280x
DSP System Control and Interrupts Reference Guide, Literature
Number SPRU712B, available at the Texas Instruments Web site.

9-6

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

See Also The following links refer to block reference pages that require the
Target Support Package software.

C280x/C28x3x/C2802x Software Interrupt Trigger,Idle Task

9-7

C281x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt

Library Embedded IDE Link for TI Code Composer Studio (idelinklib_ticcs)

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C281x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered
by events managed by other blocks in the C281x DSP Chip Support
Library.

The following C281x blocks that can generate an interrupt for
asynchronous processing are available fromTarget Support Package:

• C281x ADC

• C281x CAP

• C281x eCAN Receive

• C281x Timer

• C281x SCI Receive

• C281x SCI Transmit

• C281x SPI Receive

• C281x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each
interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.

9-8

C281x Hardware Interrupt

Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

Each interrupt is described by:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts.

9-9

C281x Hardware Interrupt
C
2

8
1

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

R
o
w

n
u
m

b
er

s
=

C
P
U

va
lu

es
/

C
o
lu

m
n

n
u
m

b
er

s
=

P
IE

va
lu

es

8
7

6
5

4
3

2
1

1
W

A
K

E
IN

T

(L
P

M
/W

D
)

T
IN

T
0

(T
IM

E
R

0)

A
D

C
IN

T

(A
D

C
)

X
IN

T
2

X
IN

T
1

R
es

er
ve

d
P

D
P

IN
T

B

(E
V

-B
)

P
D

P
IN

TA

(E
V

-A
)

2
R

es
er

ve
d

T
1O

F
IN

T

(E
V

-A
)

T
1

U
F

IN
T

(E
V

-A
)

T
1C

IN
T

(E
V

-A
)

T
1P

IN
T

(E
V

-A
)

C
M

P
3I

N
T

(E
V

-A
)

C
M

P
2I

N
T

(E
V

-A
)

C
M

P
1

IN
T

(E
V

-A
)

3
R

es
er

ve
d

C
A

P
IN

T
3

(E
V

-A
)

C
A

P
IN

T
2

(E
V

-A
)

C
A

P
IN

T
1

(E
V

-A
)

T
2O

F
IN

T

(E
V

-A
)

T
2U

F
IN

T

(E
V

-A
)

T
2C

IN
T

(E
V

-A
)

T
2P

IN
T

(E
V

-A
)

4
R

es
er

ve
d

T
3O

F
IN

T

(E
V

-B
)

T
3

U
F

IN
T

(E
V

-B
)

T
3C

IN
T

(E
V

-B
)

T
3P

IN
T

(E
V

-B
)

C
M

P
6I

N
T

(E
V

-B
)

C
M

P
5I

N
T

(E
V

-B
)

C
M

P
4

IN
T

(E
V

-B
)

5
R

es
er

ve
d

C
A

P
IN

T
6

(E
V

-B
)

C
A

P
IN

T
5

(E
V

-B
)

C
A

P
IN

T
4

(E
V

-B
)

T
4O

F
IN

T

(E
V

-B
)

T
4U

F
IN

T

(E
V

-B
)

T
4C

IN
T

(E
V

-B
)

T
4P

IN
T

(E
V

-B
)

6
R

es
er

ve
d

R
es

er
ve

d
M

X
IN

T

(M
cB

S
P

)

M
R

IN
T

(M
cB

S
P

)

R
es

er
ve

d
R

es
er

ve
d

S
P

IT
X

IN
TA

(S
P

I)

S
P

IR
X

IN
TA

(S
P

I)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9
R

es
er

ve
d

R
es

er
ve

d
E

C
A

N
1I

N
T

(C
A

N
)

E
C

A
N

0
IN

T

(C
A

N
)

S
C

IT
X

IN
T

B

(S
C

I-
B

)

S
C

IR
X

IN
T

B

(S
C

I-
B

)

S
C

IT
X

IN
TA

(S
C

I-
A

)

S
C

IR
X

IN
TA

(S
C

I-
A

)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9-10

C281x Hardware Interrupt

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. Note that
the default priority value of the base rate task is 40, so the priority
value for each asynchronously triggered task must be less than 40 for
these tasks to actually cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

Dialog
Box

9-11

C281x Hardware Interrupt

CPU interrupt numbers
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C281x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

PIE interrupt numbers
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C281x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

Simulink task priorities
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 9-8
for an explanation of task priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 9-8
for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink software
model.

Note Use this check box to enable you to test asynchronous
interrupt processing behavior in Simulink software.

9-12

C281x Hardware Interrupt

References Detailed information interrupt processing is in TMS320x281x DSP
System Control and Interrupts Reference Guide, Literature Number
SPRU078C, available at the Texas Instruments Web site.

See Also The following links to block reference pages require that Target Support
Package is installed.

C281x Software Interrupt Trigger,C281x Timer, Idle Task

9-13

C5000/C6000 Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on C5000 and
C6000 processors

Library Embedded IDE Link for TI Code Composer Studio (idelinklib_ticcs)

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes
that are downstream from the this block or a Task block connected to
this block.

Dialog
Box

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The following table provides the valid range for C5xxx and C6xxx
processors:

9-14

C5000/C6000 Hardware Interrupt

Processor Family Valid Interrupt Numbers

C5xxx 2, 3, 5-21, 23

C6xxx 4-15

The width of the block output signal corresponds to the number of
interrupt numbers specified here. Combined with the Simulink
task priorities that you enter and the preemption flag you
enter for each interrupt, these three values define how the code
and processor handle interrupts during asynchronous scheduler
operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink software
task priority specifies the Simulink priority of the downstream
blocks. Specify an array of priorities corresponding to the
interrupt numbers entered in Interrupt numbers.

Simulink task priority values are required to generate the proper
rate transition code (refer to Rate Transitions and Asynchronous
Blocks). The task priority values are also required to ensure
absolute time integrity when the asynchronous task needs to
obtain real time from its base rate or its caller. Typically, you
assign priorities for these asynchronous tasks that are higher
than the priorities assigned to periodic tasks.

Preemption flags preemptable – 1, non-preemptable – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of

9-15

C5000/C6000 Hardware Interrupt

the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

9-16

Idle Task

Purpose Create free-running task

Library Block Library: idelinklib_common

Description The Idle Task block, and the subsystem connected to it, specify one
or more functions to execute as background tasks. All tasks executed
through the Idle Task block are of the lowest priority, lower than that of
the base rate task.

Vectorized Output

The block output comprises a set of vectors—the task numbers
vector and the preemption flag or flags vector. Any preemption-flag
vector must be the same length as the number of tasks vector unless
the preemption flag vector has only one element. The value of the
preemption flag determines whether a given interrupt (and task) is
preemptible. Preemption overrides prioritization. A lower-priority
nonpreemptible task can preempt a higher-priority preemptible task.

When the preemption flag vector has one element, that element value
applies to all functions in the downstream subsystem as defined by the
task numbers in the task number vector. If the preemption flag vector
has the same number of elements as the task number vector, each task
defined in the task number vector has a preemption status defined by
the value of the corresponding element in the preemption flag vector.

9-17

Idle Task

Dialog
Box

Task numbers
Identifies the created tasks by number. Enter as many tasks as
you need by entering a vector of integers. The default values
are [1,2] to indicate that the downstream subsystem has two
functions.

The values you enter determine the execution order of the
functions in the downstream subsystem, while the number of
values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be
from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem is executed, the value
of the second element determines the order in which the second
function in the subsystem is executed, and so on.

9-18

Idle Task

For example, entering [2,3,1] in this field indicates that there
are three functions to be executed, and that the third function
is executed first, the first function is executed second, and the
second function is executed third. After all functions are executed,
the Idle Task block cycles back and repeats the execution of the
functions in the same order.

Preemption flags
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Task numbers contains more than one task, you can assign
different preemption flags to each task by entering a vector of flag
values, corresponding to the order of the tasks in Task numbers.
If Task numbers contains more than one task, and you enter
only one flag value here, that status applies to all tasks.

In the default settings [0 1], the task with priority 1 in Task
numbers is not preemptible, and the priority 2 task can be
preempted.

Enable simulation input
When you select this option, Simulink software adds an input
port to the Idle Task block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

Note Select this check box to test asynchronous interrupt processing
behavior in Simulink software.

9-19

Memory Allocate

Purpose Allocate memory section

Library Block Library: idelinklib_common

Description On C2xxx, C5xxx, or C6xxx processors, this block directs the TI compiler
to allocate memory for a new variable you specify. Parameters in the
block dialog box let you specify the variable name, the alignment of the
variable in memory, the data type of the variable, and other features
that fully define the memory required.

The block does not verify whether the entries for your variable are
valid, such as checking the variable name, data type, or section. You
must ensure that all variable names are valid, that they use valid data
types, and that all section names you specify are valid as well.

The block does not have input or output ports. It only allocates a
memory location. You do not connect it to other blocks in your model.

Dialog
Box

The block dialog box comprises multiple tabs:

• Memory — Allocate the memory for storing variables. Specify the
data type and size.

• Section — Specify the memory section in which to allocate the
variable.

The dialog box images show all of the available parameters enabled.
Some of the parameters shown do not appear until you select one or
more other parameters.

9-20

Memory Allocate

The following sections describe the contents of each pane in the dialog
box.

9-21

Memory Allocate

Memory Parameters

You find the following memory parameters on this tab.

Variable name
Specify the name of the variable to allocate. The variable is
allocated in the generated code.

9-22

Memory Allocate

Specify variable alignment
Select this option to direct the compiler to align the variable in
Variable name to an alignment boundary. When you select this
option, theMemory alignment boundary parameter appears so
you can specify the alignment. Use this parameter and Memory
alignment boundary when your processor requires this feature.

Memory alignment boundary
After you select Specify variable alignment, this option enables
you to specify the alignment boundary in bytes. If your variable
contains more than one value, such as a vector or an array, the
elements are aligned according to rules applied by the compiler.

Data type
Defines the data type for the variable. Select from the list of types
available.

Specify data type qualifier
Selecting this enables Data type qualifier so you can specify the
qualifier to apply to your variable.

Data type qualifier
After you select Specify data type qualifier, you enter the
desired qualifier here. Volatile is the default qualifier. Enter
the qualifier you need as text. Common qualifiers are static and
register. The block does not check for valid qualifiers.

Data dimension
Specifies the number of elements of the type you specify in Data
type. Enter an integer here for the number of elements.

Initialize memory
Directs the block to initialize the memory location to a fixed value
before processing.

Initial value
Specifies the initialization value for the variable. At run time, the
block sets the memory location to this value.

9-23

Memory Allocate

Section Parameters

Parameters on this pane specify the section in memory to store the
variable.

Specify memory section
Selecting this parameter enables you to specify the memory
section to allocate space for the variable. Enter either one of the

9-24

Memory Allocate

standard memory sections or a custom section that you declare
elsewhere in your code.

Memory section
Identify a specific memory section to allocate the variable in
Variable name. Verify that the section has sufficient space
to store your variable. After you specify a memory section by
selecting Specify memory section and entering the section
name in Memory section, use Bind memory section to bind
the memory section to a location.

Bind memory section
After you specify a memory section by selecting Specify memory
section and entering the section name in Memory section,
use this parameter to bind the memory section to the location in
memory specified in Section start address. When you select
this, you enable the Section start address parameter.

The new memory section specified in Memory section is defined
when you check this parameter.

Note Do not use Bind memory section for existing memory
sections.

Section start address
Specify the address to which to bind the memory section. Enter
the address in decimal form or in hexadecimal with a conversion
to decimal as shown by the default value hex2dec('8000'). The
block does not verify the address—verify that the address exists
and can contain the memory section you entered in Memory
section.

See Also Memory Copy

9-25

Memory Copy

Purpose Copy to and from memory section

Library Block Library: idelinklib_common

Description In generated code, this block copies variables or data from and to
processor memory as configured by the block parameters. Your model
can contain as many of these blocks as you require to manipulate
memory on your processor.

Each block works with one variable, address, or set of addresses
provided to the block. Parameters for the block let you specify both
the source and destination for the memory copy, as well as options for
initializing the memory locations.

Using parameters provided by the block, you can change options like
the memory stride and offset at run time. In addition, by selecting
various parameters in the block, you can write to memory at program
initialization, at program termination, and at every sample time. The
initialization process occurs once, rather than occurring for every read
and write operation.

With the custom source code options, the block enables you to add
custom ANSI C source code before and after each memory read and
write (copy) operation. You can use the custom code capability to lock
and unlock registers before and after accessing them. For example,
some processors have registers that you may need to unlock and
lock with EALLOW and EDIS macros before and after your program
accesses them.

If your processor or board supports quick direct memory access (QDMA)
the block provides a parameter to check that implements the QDMA
copy operation, and enables you to specify a function call that can
indicate that the QDMA copy is finished. Only the C621x, C64xx, and
C671x processor families support QDMA copy.

Block Operations

This block performs operations at three periods during program
execution—initialization, real-time operations, and termination. With
the options for setting memory initialization and termination, you

9-26

Memory Copy

control when and how the block initializes memory, copies to and
from memory, and terminates memory operations. The parameters
enable you to turn on and off memory operations in all three periods
independently.

Used in combination with the Memory Allocate block, this block
supports building custom device drivers, such as PCI bus drivers or
codec-style drivers, by letting you manipulate and allocate memory.
This block does not require the Memory Allocate block to be in the
model.

In a simulation, this block does not perform any operation. The block
output is not defined.

Copy Memory

When you employ this block to copy an individual data element from
the source to the destination, the block copies the element from the
source in the source data type, and then casts the data element to the
destination data type as provided in the block parameters.

Dialog
Box

The block dialog box contains multiple tabs:

• Source — Identifies the sequential memory location to copy from.
Specify the data type, size, and other attributes of the source variable.

• Destination — Specify the memory location to copy the source to.
Here you also specify the attributes of the destination.

• Options— Select various parameters to control the copy process.

The dialog box images show many of the available parameters enabled.
Some parameters shown do not appear until you select one or more
other parameters. Some parameters are not shown in the figures, but
the text describes them and how to make them available.

9-27

Memory Copy

Sections that follow describe the parameters on each tab in the dialog
box.

9-28

Memory Copy

Source Parameters

Copy from
Select the source of the data to copy. Choose one of the entries
on the list:

• Input port— This source reads the data from the block input
port.

9-29

Memory Copy

• Specified address — This source reads the data at the
specified location in Specify address source and Address.

• Specified source code symbol — This source tells the
block to read the symbol (variable) you enter in Source code
symbol. When you select this copy from option, you enable the
Source code symbol parameter.

Note If you do not select Input port for Copy from, change
Data type from the default Inherit from source to one of
the data types on the Data type list. If you do not make the
change, you receive an error message that the data type cannot
be inherited because the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &src, indicating that the block expects the address to come
from the input port. Being able to change the address dynamically
lets you use the block to copy different variables by providing the
variable address from an upstream block in your model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and uses
valid syntax. Enter a string to specify the symbol exactly as you
use it in your code.

9-30

Memory Copy

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. The following
example converts Ox1000 to decimal form.

4096 = hex2dec('1000');

For this example, you could enter either 4096 or hex2dec('1000')
as the address.

Data type
Use this parameter to specify the type of data that your source
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from source for
inheriting the data type from the block input port.

Data length
Specifies the number of elements to copy from the source location.
Each element has the data type specified in Data type.

Use offset when reading
When you are reading the input, use this parameter to specify
an offset for the input read. The offset value is in elements with
the assigned data type. The Specify offset source parameter
becomes available when you check this option.

Specify offset source
The block provides two sources for the offset — Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when reading the input data.

9-31

Memory Copy

Offset
Offset tells the block whether to copy the first element of the
data at the input address or value, or skip one or more values
before starting to copy the input to the destination. Offset defines
how many values to skip before copying the first value to the
destination. Offset equal to one is the default value and Offset
accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for reading the input. By
default, the stride value is one, meaning the generated code reads
the input data sequentially. When you add a stride value that
is not equal to one, the block reads the input data elements not
sequentially, but by skipping spaces in the source address equal
to the stride. Stride must be a positive integer.

The next two figures help explain the stride concept. In the first
figure you see data copied without any stride. Following that
figure, the second figure shows a stride value of two applied
to reading the input when the block is copying the input to an
output location. You can specify a stride value for the output with
parameter Stride on the Destination pane. Compare stride with
offset to see the differences.

9-32

Memory Copy

9-33

Memory Copy

9-34

Memory Copy

Destination Parameters

Copy to
Select the destination for the data. Choose one of the entries on
the list:

• Output port— Copies the data to the block output port. From
the output port the block passes data to downstream blocks
in the code.

• Specified address— Copies the data to the specified location
in Specify address source and Address.

9-35

Memory Copy

• Specified source code symbol— Tells the block to copy the
variable or symbol (variable) to the symbol you enter in Source
code symbol. When you select this copy to option, you enable
the Source code symbol parameter.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &dst, indicating that the block expects the destination address
to come from the input port. Being able to change the address
dynamically lets you use the block to copy different variables by
providing the variable address from an upstream block in your
model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and
uses valid syntax.

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. This example
converts Ox2000 to decimal form.

8192 = hex2dec('2000');

9-36

Memory Copy

For this example, you could enter either 8192 or hex2dec('2000')
as the address.

Data type
Use this parameter to specify the type of data that your variable
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option inherit from source for
inheriting the data type for the variable from the block input port.

Specify offset source
The block provides two sources for the offset—Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when writing the output data.

Offset
Offset tells the block whether to write the first element of the
data to be copied to the first destination address location, or skip
one or more locations at the destination before writing the output.
Offset defines how many values to skip in the destination before
writing the first value to the destination. One is the default offset
value and Offset accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for copying the input to
the destination. By default, the stride value is one, meaning
the generated code writes the input data sequentially to the
destination in consecutive locations. When you add a stride value
not equal to one, the output data is stored not sequentially, but by
skipping addresses equal to the stride. Stride must be a positive
integer.

This figure shows a stride value of three applied to writing the
input to an output location. You can specify a stride value for the
input with parameter Stride on the Source pane. As shown in

9-37

Memory Copy

the figure, you can use both an input stride and output stride at
the same time to enable you to manipulate your memory more
fully.

Sample time
Sample time sets the rate at which the memory copy operation
occurs, in seconds. The default value Inf tells the block to use a
constant sample time. You can set Sample time to -1 to direct
the block to inherit the sample time from the input, if there is one,

9-38

Memory Copy

or the Simulink software model (when there are no input ports on
the block). Enter the sample time in seconds as you need.

9-39

Memory Copy

Options Parameters

9-40

Memory Copy

Set memory value at initialization
When you check this option, you direct the block to initialize
the memory location to a specific value when you initialize your
program at run time. After you select this option, use the Set
memory value at termination and Specify initialization
value source parameters to set your desired value. Alternately,
you can tell the block to get the initial value from the block input.

Specify initialization value source
After you check Set memory value at initialization, use this
parameter to select the source of the initial value. Choose either

• Specify constant value — Sets a single value to use when
your program initializes memory. Enter any value that meets
your needs.

• Specify source code symbol — Specifies a variable (a
symbol) to use for the initial value. Enter the symbol as a
string.

Initialization value (constant)
If you check Set memory value at initialization and choose
Specify constant value for Specify initialization value
source, enter the constant value to use in this field. Any real
value that meets your needs is acceptable.

Initialization value (source code symbol)
If you check Set memory value at initialization and choose
Specify source code symbol for Specify initialization value
source, enter the symbol to use in this field. Any symbol that
meets your needs and is in the symbol table for the program is
acceptable. When you enter the symbol, the block does not verify
whether the symbol is a valid one. If it is not valid you get an
error when you try to compile, link, and run your generated code.

Apply initialization value as mask
You can use the initialization value as a mask to manipulate
register contents at the bit level. Your initialization value is
treated as a string of bits for the mask.

9-41

Memory Copy

Checking this parameter enables the Bitwise operator
parameter for you to define how to apply the mask value.

To use your initialization value as a mask, the output from the
copy has to be a specific address. It cannot be an output port,
but it can be a symbol.

Bitwise operator
To use the initialization value as a mask, select one of the entries
on the following table from the Bitwise operator list to describe
how to apply the value as a mask to the memory value.

Bitwise
Operator List
Entry Description

bitwise AND Apply the mask value as a bitwise AND to
the value in the register.

bitwise OR Apply the mask value as a bitwise OR to
the value in the register.

bitwise
exclusive OR

Apply the mask value as a bitwise exclusive
OR to the value in the register.

left shift Shift the bits in the register left by
the number of bits represented by the
initialization value. For example, if your
initialization value is 3, the block shifts the
register value to the left 3 bits. In this case,
the value must be a positive integer.

right shift Shift the bits in the register to the right
by the number of bits represented by the
initialization value. For example, if your
initialization value is 6, the block shifts the
register value to the right 6 bits. In this
case, the value must be a positive integer.

9-42

Memory Copy

Applying a mask to the copy process lets you select individual
bits in the result, for example, to read the value of the fifth bit by
applying the mask.

Set memory value at termination
Along with initializing memory when the program starts to access
this memory location, this parameter directs the program to set
memory to a specific value when the program terminates.

Set memory value only at initialization/termination
This block performs operations at three periods during program
execution—initialization, real-time operations, and termination.
When you check this option, the block only does the memory
initialization and termination processes. It does not perform any
copies during real-time operations.

Insert custom code before memory write
Select this parameter to add custom ANSI C code before the
program writes to the specified memory location. When you select
this option, you enable the Custom code parameter where you
enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just before the memory write operation. Code you enter in this
field appears in the generated code exactly as you enter it.

Insert custom code after memory write
Select this parameter to add custom ANSI C code immediately
after the program writes to the specified memory location. When
you select this option, you enable the Custom code parameter
where you enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just after the memory write operation. Code you enter in this field
appears in the generated code exactly as you enter it.

9-43

Memory Copy

Use QDMA for copy (if available)
For processors that support quick direct memory access (QDMA),
select this parameter to enable the QDMA operation and to access
the blocking mode parameter.

If you select this parameter, your source and destination data
types must be the same or the copy operation returns an error.
Also, the input and output stride values must be one.

Enable blocking mode
If you select the Use QDMA for copy parameter, select this
option to make the memory copy operations blocking processes.
With blocking enabled, other processing in the program waits
while the memory copy operation finishes.

See Also Memory Allocate

9-44

Target Preferences/Custom Board

Purpose Configure model for a supported processor

Library

Description Use this block to configure hardware settings and code generation
features for your custom board. Include this block in models you use to
generate Real-Time Workshop code to run on processors and boards.
It does not connect to any other blocks, but stands alone to set the
processor preferences for the model.

Note Simulink and Embedded IDE Link software return an error
when your model does not include a Target Preferences block or has
more than one. When you are generating code for a model, place the
Target Preferences block at the top level of your model. When you are
generating code for a subsystem, place the Target Preferences block at
the subsystem level of your model.

The processor options you specify on this block are:

• Processor and board information

• Memory mapping and layout

Setting the options included in this dialog box results in identifying your
processor and board to Real-Time Workshop software, Embedded IDE
Link, and Simulink software. Setting the options also, configures the
memory map for your processor. Both steps are essential for generating
code for any board that is custom or explicitly supported.

Generating Code from Model Subsystems

Real-Time Workshop software provides the ability to generate code
from a selected subsystem in a model. To generate code for custom
hardware from a subsystem, the subsystem model must include
a Target Preferences block.

9-45

Target Preferences/Custom Board

Dialog
Box

This reference page section contains the following subsections:

• “Board Pane” on page 9-46

• “Memory Pane” on page 9-49

• “Sections Pane” on page 9-52

• “Add Processor Dialog Box” on page 9-54

Target Preferences block dialog boxes provide tabbed access to the
following panes with options you set for the processor and board:

• Board Pane — Select the processor, set the clock speed, and identify
the processor. In addition, Add new on this pane opens the New
Processor dialog box.

• Memory Pane — Set the memory allocation and layout on the
processor (memory mapping).

• Sections Pane — Determine the arrangement and location of the
sections on the processor and compiler information.

Board Pane

The following options appear on the Board pane, under the Board
Properties, Board Support, and IDE Support labels.

Board type
Enter the type of your target board. Enter Custom to support any
board that uses a processor on the Processor list, or enter the
name of a supported board. If you are using one of the explicitly
supported boards, choose the Target Preferences/Custom Board
block for that board from the Simulink .

Processor
Select the type of processor to use from the list. The processor
you select determines the contents and setting for options on the
Memory and Sections panes in this dialog box.

9-46

Target Preferences/Custom Board

Add New
Clicking Add new opens a new dialog box where you specify
configuration information for a processor that is not on the
Processor list.

For details about the New Processor dialog box, refer to “Add
Processor Dialog Box” on page 9-54.

Delete
Delete a processor that you added to the Processor list. You
cannot delete processors that you did not add.

CPU Clock (MHz)
Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting the actual
clock rate produces code that runs correctly on the hardware.
Setting this value incorrectly causes timing and profiling errors
when you run the code on the hardware.

The timer uses the value of CPU clock to calculate the time for
each interrupt. For example, a model with a sine wave generator
block running at 1 kHz uses timer interrupts to generate sine
wave samples at the proper rate. For example, using 100 MHz,
the timer calculates the sine generator interrupt period as follows:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires:

100,000,000/1000 = 1 Sine block interrupt per 100,000 clock ticks

Thus, report the correct clock rate, or the interrupts come at the
wrong times and the results are incorrect.

9-47

Target Preferences/Custom Board

Board Support
Select the following parameters and edit their values in the text
box on the right:

• Source files— Enter the full paths to source code files.

• Include paths— Add paths to include files.

• Libraries — Identify specific libraries for the processor.
Required libraries appear on the list by default. To add more
libraries, entering the full path to the library with the library
file in the text area.

• Initialize functions— If your project requires an initialize
function, enter it in this field. By default, this parameter is
empty.

• Terminate functions — Enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

Note Invalid or incorrect entries in these fields can cause errors
during code generation. When you enter a file path, library, or
function, the block does not verify that the path or function exists
or is valid.

When entering a path to a file, library, or other custom code, use
the following string in the path to refer to the CCS installation
directory.

$(install_dir)

Enter new paths or files (custom code items) one entry per line.
Include the full path to the file for libraries and source code.
Board custom code options do not support functions that use
return arguments or values. Only functions of type void fname
void are valid as entries in these parameters.

9-48

Target Preferences/Custom Board

Operating System
The software disables this option if a supported RTOS is not
available for your processor.

Board name
Board name appears after you click Get from IDE. Select the
board you are using. Match Board name with the Board Type
option near the top of the Board pane.

Processor name
Processor name appears after you click Get from IDE. If the
board you selected in Board name has multiple processors, select
the processor you are using. MatchProcessor name with the
Processor option near the top of the Board pane.

Note Click Apply to update the board and processor description under
IDE Support.

Memory Pane

After selecting a board, specify the layout of the physical memory on
your processor and board to determine how to use it for your program.
For supported boards, the board-specific Target Preferences blocks set
the default memory map.

The Memory pane contains memory options for:

• Physical Memory— Specifies the processor and board memory map

• Cache Configuration — Select a cache configuration where
available, such as L2 cache, and select one of the corresponding
configuration options, such as 32 kb.

For more information about memory segments and memory allocation,
consult the reference documentation for the IDE or processor.

The Physical Memory table shows the memory segments (or “memory
banks”) available on the board and processor. By default, Target

9-49

Target Preferences/Custom Board

Preferences blocks show the memory segments found on the selected
processor. In addition, the Memory pane on preconfigured Target
Preferences blocks shows the memory segments available on the
board, but external to the processor. Target Preferences blocks set
default starting addresses, lengths, and contents of the default memory
segments.

Click Add to add physical memory segments to the Memory banks
table.

After you add the segment, you can configure the starting address,
length, and contents for the new segment.

Name
To change the memory segment name, click the name and type
the new name. Names are case sensitive. NewSegment is not the
same as newsegment or newSegment.

Note You cannot rename default processor memory segments
(name in gray text).

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs).

Contents
Configure the segment to store Code, Data, or Code & Data.
Changing processors changes the options for each segment.

9-50

Target Preferences/Custom Board

You can add and use as many segments of each type as you
need, within the limits of the memory on your processor. Every
processor must have a segment that holds code, and a segment
that holds data.

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Memory banks table.
In Name, change the temporary name NEWMEM1 by entering the
new segment name. Entering the new name, or clicking Apply,
updates the temporary name on the table to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Memory banks table
and click Remove to delete the segment.

Cache (Configuration)
When the Processor on the Board pane supports an L2 cache
memory structure, the dialog box displays a table of Cache
parameters. You can use this table to configure the cache as
SRAM and partial cache. Both the data memory and the program
share this second-level memory.

If your processor supports the two-level memory scheme, this
option enables the L2 cache on the processor.

Some processors support code base memory organization. For
example, you can configure part of internal memory as code.

Cache level lets you select one of the available cache levels to
configure by selecting one of its configurations. For example, you
can select L2 cache level and choose one of its configurations, such
as 32 kb.

9-51

Target Preferences/Custom Board

Sections Pane

Options on this pane specify where program sections go in memory.
Program sections are distinct from memory segments—sections are
portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some
sections relate to the compiler and some can be custom sections.

For more information about program sections and objects, refer to the
online help for your IDE.

Within the Sections pane, you configure the allocation of sections for
Compiler and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections and Custom sections lists in the pane. All
sections do not appear on all lists.

String
Section
List Description of the Section Contents

.bss Compiler Static and global C variables in the code

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.pinit Compiler Load allocation of the table of global
object constructors section

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements in
the executable code

9-52

Target Preferences/Custom Board

String
Section
List Description of the Section Contents

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

You can learn more about memory sections and objects in the online
help for your IDE.

Default Sections
When you highlight a section on the list, Description show a
brief description of the section. Also, Placement shows you the
memory allocation of the section.

Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows the allocation of the selected Compiler sections entry
in memory. You change the memory allocation by selecting a
different location from the Placement list. The list contains the
memory segments as defined in the physical memory map on
the Memory pane. Select one of the listed memory segments to
allocate the highlighted compiler section to the segment.

To see a description of the placement item, hover your mouse
pointer over the item for a few moments.

Custom Sections
If your program uses code or data sections that are not in the
Compiler sections, add the new sections to Custom sections.

Sections
This window lists data sections that are not in the Compiler
sections.

9-53

Target Preferences/Custom Board

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Name
Enter the name of the new section here. To add a new section,
click Add. Then, replace the temporary name with the name
to use. Although the temporary name includes a period at the
beginning you do not need to include the period in your new
name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Contents
Identify whether the contents of the new section are Code, Data,
or Any.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

Add Processor Dialog Box

To add a new processor to the drop down list for the Processors option,
click the Add new button on the Board pane. The software opens
the Add Processor dialog box.

New Name
Provide a name to identify your new processor. You can use any
valid C string value in this field. The name you enter in this field
appears on the list of processors after you add the new processor.

9-54

Target Preferences/Custom Board

If you do not provide an entry for each parameter, Embedded IDE
Link returns an error message without creating a processor entry.

Based On
When you add a processor, the dialog box uses the settings from
the currently selected processor as the basis for the new one. This
parameter displays the currently selected processor.

Compiler options
Identifies the processor family of the new processor to the
compiler. Successful compilation requires this switch. The string
depends on the processor family or class.

Linker options
Identifies the processor family of the new processor to the
compiler. Successful compilation requires this switch. The string
depends on the processor family or class.

9-55

Target Preferences/Custom Board

9-56

10

Configuration Parameters

10 Configuration Parameters

Embedded IDE Link Pane

In this section...

“Overview” on page 10-4

“Export IDE link handle to base workspace” on page 10-5

“IDE link handle name” on page 10-7

“Profile real-time execution” on page 10-8

“Profile by” on page 10-10

“Number of profiling samples to collect” on page 10-12

“Project options” on page 10-14

“Compiler options string” on page 10-16

“Linker options string” on page 10-18

10-2

Embedded IDE Link Pane

In this section...

“System stack size (MAUs)” on page 10-20

“Build action” on page 10-21

“Interrupt overrun notification method” on page 10-24

“Interrupt overrun notification function” on page 10-26

“PIL block action” on page 10-27

“Maximum time allowed to build project (s)” on page 10-29

“Maximum time to complete IDE operations (s)” on page 10-31

“Source file replacement” on page 10-33

10-3

10 Configuration Parameters

Overview
Options on this pane configure the generated projects and code for the
processors supported by your embedded IDE. They also enable PIL block
generation and provide real-time execution and stack use profiling.

10-4

Embedded IDE Link Pane

Export IDE link handle to base workspace
Directs the software to export the ticcs object to your MATLAB workspace.

Settings
Default: On

On
Directs the build process to export the ticcs object created to your
MATLAB workspace. The new object appears in the workspace browser.
Selecting this option enables the IDE link handle name option.

Off
prevents the build process from exporting the ticcs object to your
MATLAB software workspace.

Dependency
This parameter enables IDE link handle name.

Command-Line Information

Parameter: exportIDEObj
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

10-5

10 Configuration Parameters

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-6

Embedded IDE Link Pane

IDE link handle name
specifies the name of the ticcs object that the build process creates.

Settings
Default: CCS_Obj

• Enter any valid C variable name, without spaces.

• The name you use here appears in the MATLAB workspace browser to
identify the ticcs object.

• The handle name is case sensitive.

Dependency
This parameter is enabled by Export IDE link handle to base workspace.

Command-Line Information

Parameter: ideObjName
Type: string
Value:
Default: CCS_Obj

Recommended Settings

Application Setting

Debugging Enter any valid C program variable name,
without spaces

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-7

10 Configuration Parameters

Profile real-time execution
enables real-time execution profiling in the generated code by adding
instrumentation for task functions or atomic subsystems.

Settings
Default: Off

On
Adds instrumentation to the generated code to support execution
profiling and generate the profiling report.

Off
Does not instrument the generated code to produce the profile report.

Dependencies
This parameter adds Number of profiling samples to collect and Profile
by.

Selecting this parameter disables Export ID link handle to base
workspace.

Setting Build action to Archive_library or
Create_processor_in_the_loop project removes this parameter.

Command-Line Information

Parameter: ProfileGenCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

10-8

Embedded IDE Link Pane

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

For more information about using profiling, refer to the “profile” and “Profiling
Code Execution in Real-Time” topics in the Embedded IDE Link User’s Guide..

10-9

10 Configuration Parameters

Profile by
Defines which execution profiling technique to use.

Settings
Default: Task

Task
Profiles model execution by the tasks in the model.

Atomic subsystem
Profiles model execution by the atomic subsystems in the model.

Dependencies
Selecting Real-time execution profiling enables this parameter.

Command-Line Information

Parameter: profileBy
Type: string
Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting

Debugging Task or Atomic subsystem

Traceability Archive_library

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-10

Embedded IDE Link Pane

For more information about PIL and its uses, refer to the “Verifying
Generated Code via Processor-in-the-Loop” topic in the Embedded IDE Link
User’s Guide.

For more information about using profiling, refer to the “profile” and “Profiling
Code Execution in Real-Time” topics in the Embedded IDE Link User’s Guide..

10-11

10 Configuration Parameters

Number of profiling samples to collect
Specifies the number of profiling samples to collect. Collection stops when
the buffer for profiling data is full.

Settings
Default: 100

Minimum: 1

Maximum: Buffer capacity in samples

Tips

• Collecting profiling data on a simulator may take a very long time.

• Data collection stops after collecting the specified number of samples. The
application and processor continue to run.

Dependencies
This parameter is enabled by Profile real-time execution.

Command-Line Information

Parameter:ProfileNumSamples
Type: int
Value: Positive integer
Default: 100

Recommended Settings

Application Setting

Debugging 100

Traceability No impact

Efficiency No impact

Safety precaution No impact

10-12

Embedded IDE Link Pane

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-13

10 Configuration Parameters

Project options
Sets the project options for building your project from the model.

Settings
Default: Custom

Custom
Lets the user apply a specialized combination of build and optimization
settings.

Custom applies the same settings as the Release project configuration
in CCS, except:

• The compiler options do not use any optimizations.

• The memory configuration specifies a memory model that uses Far
Aggregate for data and Far for functions.

Debug
Applies the Debug project options defined by Code Composer Studio
software to the generated project and code. The Compiler options string
becomes -g -d _DEBUG

Release
Applies the Release project configuration defined by Code Composer
Studio software to the generated project and code. Sets the Compiler
options string to -o2.

Dependencies
• Selecting Custom disables the reset options for Compiler options string
and Linker options string.

• Selecting Release sets the Compiler options string to -o2.

• Selecting Debug sets the Compiler options string to -g -d _DEBUG

.

Command-Line Information

Parameter: projectOptions

10-14

Embedded IDE Link Pane

Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom or Debug

Traceability Custom, Debug, Release

Efficiency Release

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-15

10 Configuration Parameters

Compiler options string
Lets you enter a string of compiler options to define your project configuration.

Settings
Default: No default

Tips

• To import compiler string options from the current project in CCS, click
Get from IDE.

• To reset the compiler options to the default values, click Reset.

• Use spaces between options.

• Verify that the options are valid. The software does not validate the option
string.

• Setting Project options to Custom applies the Custom compiler options
defined by Embedded IDE Link software. Custom does not use any
optimizations.

• Setting Project options to Debug applies the _Debug, -g, and -d complier
flags defined by Code Composer Studio software.

• Setting Project options to Release applies the CCS Release compiler
options and adds the -o2 optimization flag defined by Code Composer
Studio software.

Command-Line Information

Parameter: compilerOptionsStr
Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom

10-16

Embedded IDE Link Pane

Application Setting

Traceability Custom

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-17

10 Configuration Parameters

Linker options string
Enables you to specify linker command options that determine how to link
your project when you build your project.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the
options string.

• To import linker string options from the current project in CCS, click Get
from IDE.

• To reset the linker command options to the default values, click Reset.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: linkerOptionsStr
Type: string
Value: any valid linker option
Default: none

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

10-18

Embedded IDE Link Pane

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-19

10 Configuration Parameters

System stack size (MAUs)
Allocates memory for the system stack on the processor.

Settings
Default: 8192

Minimum: 0

Maximum: Available memory

• Enter the stack size in minimum addressable units (MAUs)..

• The software does not verify that your size is valid. Be sure that you enter
an acceptable value.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: systemStackSize
Type: int
Default: 8192

Recommended Settings

Application Setting

Debugging int

Traceability int

Efficiency int

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-20

Embedded IDE Link Pane

Build action
Defines how Real-Time Workshop software responds when you press Ctrl+B
to build your model.

Settings
Default: Build_and_execute

Build_and_execute
Builds your model, generates code from the model, and then compiles
and links the code. After the software links your compiled code, the
build process downloads and runs the executable on the processor.

Create_project
Directs Real-Time Workshop software to create a new project in the IDE.

Archive_library
Invokes the CCS Archiver to build and compile your project, but It does
not run the linker to create an executable project. Instead, the result
is a library project.

Build
Builds a project from your model. Compiles and links the code. Does not
download and run the executable on the processor.

Create_processor_in_the_loop_project
Directs the Real-Time Workshop code generation process to create PIL
algorithm object code as part of the project build.

Dependencies
Selecting Archive_library removes the following parameters:

• Interrupt overrun notification method

• Interrupt overrun notification function

• Profile real-time execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

10-21

10 Configuration Parameters

• Reset

• Export IDE link handle to base workspace

Selecting Create_processor_in_the_loop_project removes the following
parameters:

• Interrupt overrun notification method

• Interrupt overrun notification function

• Profile real-time execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

• Reset

• Export IDE link handle to base workspace with the option set to
export the handle

Command-Line Information

Parameter: buildAction
Type: string
Value: Build | Build_and_execute | Create_project Archive_library
| Create_processor_in_the_loop_project
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Build_and_execute

Traceability Archive_library

Efficiency No impact

Safety precaution No impact

10-22

Embedded IDE Link Pane

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

For more information about PIL and its uses, refer to the “Verifying
Generated Code via Processor-in-the-Loop” topic in the Embedded IDE Link
User’s Guide.

10-23

10 Configuration Parameters

Interrupt overrun notification method
Specifies how your program responds to overrun conditions during execution.

Settings
Default: None

None
Your program does not notify you when it encounters an overrun
condition.

Print_message
Your program prints a message to standard output when it encounters
an overrun condition.

Call_custom_function
When your program encounters an overrun condition, it executes a
function that you specify in Interrupt overrun notification function.

Tips

• The definition of the standard output depends on your configuration.

Dependencies
Selecting Call_custom_function enables the Interrupt overrun
notification function parameter.

Setting this parameter to Call_custom_function enables the Interrupt
overrun notification function parameter.

Command-Line Information

Parameter: overrunNotificationMethod
Type: string
Value: None | Print_message | Call_custom_function
Default: None

10-24

Embedded IDE Link Pane

Recommended Settings

Application Setting

Debugging Print_message or Call_custom_function

Traceability Print_message

Efficiency None

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-25

10 Configuration Parameters

Interrupt overrun notification function
Specifies the name of a custom function your code runs when it encounters an
overrun condition during execution.

Settings
No Default

Dependencies
This parameter is enabled by setting Interrupt overrun notification
method to Call_custom_function.

Command-Line Information

Parameter: overrunNotificationFcn
Type: string
Value: no default
Default: no default

Recommended Settings

Application Setting

Debugging String

Traceability String

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-26

Embedded IDE Link Pane

PIL block action
Specifies whether Real-Time Workshop software builds the PIL block and
downloads the block to the processor

Settings
Default: Create_PIL_block_and_download

Create_PIL_block_build_and_download
Builds and downloads the PIL application to the processor after creating
the PIL block. Adds PIL interface code that exchanges data with
Simulink.

Create_PIL_block
Creates a PIL block, places the block in a new model, and then stops
without building or downloading the block. The resulting project will
not compile in the IDE.

None
Configures model to generate a CCS project that contains the PIL
algorithm code. Does not build the PIL object code or block. The new
project will not compile in the IDE.

Tips

• When you click Build on the PIL dialog box, the build process adds the PIL
interface code to the project and compiles the project in the IDE.

• If you select Create PIL block, you can build manually from the block
right-click context menu

• After you select Create PIL Block, copy the PIL block into your model to
replace the original subsystem. Save the original subsystem in a different
model so you can restore it in the future. Click Build to build your model
with the PIL block in place.

• Add the PIL block to your model to use cosimulation to compare PIL
results with the original subsystem results. Refer to the demo “Comparing
Simulation and processor Implementation with Processor-in-the-Loop
(PIL)” in the product demos Embedded IDE Link

10-27

10 Configuration Parameters

• When you select None or Create_PIL_block, the generated project will
not compile in the IDE. To use the PIL block in this project, click Build
followed by Download in the PIL block dialog box.

Dependency
Enable this parameter by setting Build action to
Create_processor_in_the_loop_project.

Command-Line Information

Parameter: configPILBlockAction
Type: string
Value: None | Create_PIL_block |
Create_PIL_block_build_and_download
Default: Create_PIL_block

Recommended Settings

Application Setting

Debugging Create_PIL_block_build_and_download

Traceability Create_PIL_block_build_and_download

Efficiency None

Safety precaution No impact

See Also
For more information, refer to the “Verifying Generated Code via
Processor-in-the-Loop” topic in the Embedded IDE Link User’s Guide.

10-28

Embedded IDE Link Pane

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message.

Settings
Default: 1000

Minimum: 1

Maximum: No limit

Tips

• The build process continues even if MATLAB does not receive the
completion message in the allotted time.

• This timeout value does not depend on the global timeout value in a ticcs
object or theMaximum time to complete IDE operations timeout value.

Dependency
This parameter is disabled when you set Build action to Create_project.

Command-Line Information

Parameter:TBD
Type: int
Value: Integer greater than 0
Default: 100

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

10-29

10 Configuration Parameters

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-30

Embedded IDE Link Pane

Maximum time to complete IDE operations (s)
specifies how long the software waits for IDE functions, such as read or
write, to return completion messages.

Settings
Default: 10

Minimum: 1

Maximum: No limit

Tips

• The IDE operation continues even if MATLAB does not receive the message
in the allotted time.

• This timeout value does not depend on the global timeout value in a ticcs
object or theMaximum time allowed to build project (s) timeout value

Command-Line Information

Parameter:TBD
Type: int
Value:
Default: 10

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

10-31

10 Configuration Parameters

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-32

Embedded IDE Link Pane

Source file replacement
Selects the diagnostic action to take if Embedded IDE Link software detects
conflicts that you are replacing source code with custom code.

Settings
Default: warn

none
Does not generate warnings or errors when it finds conflicts.

warning
Displays a warning.

error
Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

Tips

• The build operation continues if you select warning and the software
detects custom code replacement. You see warning messages as the build
progresses.

• Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your
custom code replacement files.

• Select none when the replacement process is correct and you do not want to
see multiple messages during your build.

• The messages apply to Real-Time Workshop Custom Code replacement
options as well.

Command-Line Information

Parameter: DiagnosticActions
Type: string
Value: none | warning | error
Default: warning

10-33

10 Configuration Parameters

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency warning

Safety precaution error

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-34

A

Supported Processors

This appendix provides the details about the processors, simulators, and
software that work with Embedded IDE Link.

• “Supported Platforms” on page A-2

• “Supported Versions of Code Composer Studio” on page A-5

A Supported Processors

Supported Platforms

In this section...

“Product Features Supported by Each Processor or Family” on page A-2

“Coemulation Support” on page A-3

“Supported Processors and Simulators” on page A-3

“Custom Board Support” on page A-4

This appendix lists the processors and simulators that work with the latest
released version of Embedded IDE Link. Generally, the product supports
boards and simulators from a given processor family. In some cases, only the
simulators work, as noted in the tables in the next sections.

Product Features Supported by Each Processor or
Family
The following table indicates which Embedded IDE Link features are
available by processor family.

Features by Processor Family

Automation Interface Component Project Generator
Component Verification

Processor
Family

Debug
Mode RTDX Code Generation

Processor-
in-the-Loop

Real-Time
Execution
Profiling

C28xx Yes Yes Yes Yes Yes

C54xx Yes No No No No

C55xx Yes Yes Yes Yes Yes

C62xx Yes No Yes Yes Yes

C64x and
C64x+

Yes No Yes Yes Yes

A-2

Supported Platforms

Features by Processor Family (Continued)

Automation Interface Component Project Generator
Component Verification

Processor
Family

Debug
Mode RTDX Code Generation

Processor-
in-the-Loop

Real-Time
Execution
Profiling

C67x and
C67x+

Yes No Yes Yes Yes

DM64x Yes No Yes Yes Yes

DM643x Yes No Yes Yes Yes

TMS470R1x Yes No No No No

TMS470R2x Yes No No No No

Coemulation Support
An added feature for OMAP processors is coemulation for the two processors
that comprise the OMAP. Embedded IDE Link supports coemulation or direct
multiprocessor support for the TMS470R2x (TI-enhanced ARM925) and
TMS320C55x DSP in OMAP 1510 and OMAP 5910.

Supported Processors and Simulators
Embedded IDE Link for has been tested on the following processors and
boards produced by TI and others.

• TMS320C2000

- Simulators (C28x)

- C2808 eZdsp, C2812 eZdsp, C2833x Floating-Point Processors

• TMS320C5000

- Simulators (C54x, C55x)

- C5510 DSK

- C5416 DSK, C5402 DSK

A-3

A Supported Processors

• TMS320C6000

- Simulators (C62x, C64x, C67x)

- C6713 DSK, C6711 DSK, C6701 EVM

- C6416 DSK

- DM64x

- DM643x

- C6211 DSK

• OMAP

- OMAP 1510

- OMAP 5910

• TMS470Rxx

- Boards and simulators based on the TMS470R1x processor

- Boards and simulators based on the TMS470R2x processor

Custom Board Support
You can use Embedded IDE Link with your custom board if:

• It uses one or more of the supported processors in the preceding list or if
it is in the Processor list of the Target Preferences/Custom Board block
for your processor family.

• You are able to use Code Composer Studio IDE to interact with your
board/processor combination.

you should be able to use Embedded IDE Link with your hardware.

A-4

Supported Versions of Code Composer Studio

Supported Versions of Code Composer Studio
The following table lists versions of Embedded IDE Link and the versions of
Code Composer Studio they support.

Embedded
IDE Link
Version

MATLAB
Release

Supported Version of Code Composer
Studio

4.0 R2009b CCS 3.3 for
C64x+,C6000,C5000,C2000,OMAP processors
(tested on CCS 3.3 SR10)

3.4 R2009a CCS 3.3 for
C64x+,C6000,C5000,C2000,OMAP processors

3.3 R2008b Only CCS 3.3 with DSP/BIOS
5.32.01 or 5.32.05 (not 5.32.00)
(C64x+,C6000,C5000,C2000,OMAP)
CCS 3.3 SR7 has a bug and is not supported

3.2 R2008a Only CCS 3.3 with DSP/BIOS 5.3 (not 5.32.00)

3.1 R2007b Only CCS 3.3 with DSP/BIOS 5.3

3.0 R2007a • CCS 3.2 for C64x+ processors

• CCS 3.1 for C2000, C5000, C6000, and
OMAP processors

2.1 R2006b • CCS 3.2 for C64x+ processors

• CCS 3.1 for C2000, C5000, C6000, and
OMAP processors

2.0 R2006a+ CCS 3.1 for C2000, C5000, C6000, and OMAP
processors

1.5 R2006a CCS 3.1 for C2000, C5000, C6000, and OMAP
processors

1.4.2 R14SP3 • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

A-5

A Supported Processors

Embedded
IDE Link
Version

MATLAB
Release

Supported Version of Code Composer
Studio

1.4.1 R14SP2 • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

1.4 R14SP1+ • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

1.3.2 R14SP1 • CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

• CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

1.3.1 R14 • CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

• CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

1.3 R13SP1+ CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

A-6

B

Reported Limitations and
Tips

B Reported Limitations and Tips

Reported Issues

In this section...

“Demonstration Programs Do Not Run Properly Without Correct GEL
Files” on page B-3

“Error Accessing type Property of ticcs Object Having Size Greater Then 1”
on page B-3

“Changing Values of Local Variables Does Not Take Effect” on page B-4

“Code Composer Studio Cannot Find a File After You Halt a Program”
on page B-4

“C54x XPC Register Can Be Modified Only Through the PC Register” on
page B-6

“Working with More Than One Installed Version of Code Composer Studio”
on page B-6

“Changing CCS Versions During a MATLAB Session” on page B-7

“MATLAB Hangs When Code Composer Studio Cannot Find a Board” on
page B-7

“Using Mapped Drives” on page B-9

“Uninstalling Code Composer Studio 3.3 Prevents Embedded IDE Link
From Connecting” on page B-9

Some long-standing issues affect the Embedded IDE Link product. When
you are using ticcs objects and the software methods to work with
Code Composer Studio and supported hardware or simulators, recall the
information in this section.

The latest issues in the list appear at the bottom. HIL refers to “hardware in
the loop,” also called processor in the loop (PIL) here and in other applications,
and sometimes referred to as function calls.

B-2

Reported Issues

Demonstration Programs Do Not Run Properly
Without Correct GEL Files
To run the Embedded IDE Link demos, you must load the appropriate GEL
files before you run the demos. For some boards, the demos run fine with the
default CCS GEL file. Some boards need to run device-specific GEL files for
the demos to work correctly.

Here are demos and boards which require specific GEL files.

• Board: C5416 DSK

Demos: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: c5416_dsk.gel

In general, if a demo does not run correctly with the default GEL file, try
using a device-specific GEL file by defining the file in the CCS Setup Utility.

Error Accessing type Property of ticcs Object Having
Size Greater Then 1
When cc is a ticcs object consisting of an array of single ticcs objects such
that

cc
Array of TICCS Objects:

API version : 1.2
Board name : C54x Simulator (Texas Instruments)
Board number : 0
Processor 0 (element 1) : TMS320C5407 (CPU, Not Running)
Processor 0 (element 2) : TMS320C5407 (CPU, Not Running)

you cannot use cc to access the type object. The example syntaxes below
generate errors.

• cc.type

• add(cc.type,'mytypedef','int')

B-3

B Reported Limitations and Tips

To access type without the error, reference the individual elements of cc as
follows:

• cc(1).type

• add(cc(2).type,'mytypedef','int')

Changing Values of Local Variables Does Not Take
Effect
If you halt the execution of your program on your DSP and modify a local
variable’s value, the new value may not be acknowledged by the compiler. If
you continue to run your program, the compiler uses the original value of
the variable.

This problem happens only with local variables. When you write to the local
variable via the Code Composer Studio Watch Window or via a MATLAB
object, you are writing into the variable’s absolute location (register or
address in memory).

However, within the processor function, the compiler sometimes saves
the local variable’s values in an intermediate location, such as in another
register or to the stack. That intermediate location cannot be determined or
changed/updated with a new value during execution. Thus the compiler uses
the old, unchanged variable value from the intermediate location.

Code Composer Studio Cannot Find a File After You
Halt a Program
When you halt a running program on your processor, Code Composer Studio
may display a dialog box that says it cannot find a source code file or a library
file.

When you halt a program, CCS tries to display the source code associated
with the current program counter. If the program stops in a system library
like the runtime library, DSP/BIOS, or the board support library, it cannot
find the source code for debug. You can either find the source code to debug it
or select the Don’t show this message again checkbox to ignore messages
like this in the future.

B-4

Reported Issues

For more information about how CCS responds to the halt, refer the online
Help for CCS. In the online help system, use the search engine to search for
the keywords “Troubleshooting” and “Support.” The following information
comes from the online help for CCS, starting with the error message:

File Not Found
The debugger is unable to locate the source file necessary to enable
source-level debugging for this program.

To specify the location of the source file

1 Click Yes. The Open dialog box appears.

2 In the Open dialog box, specify the location and name of the source file
then click Open.

The next section provides more details about file paths.

Defining a Search Path for Source Files
The Directories dialog box enables you to specify the search path the debugger
uses to find the source files included in a project.

To Specify Search Path Directories

1 Select Option > Customize.

2 In the Customize dialog box, select the Directories tab. Use the scroll
arrows at the top of the dialog box to locate the tab.

The Directories dialog box offers the following options.

• Directories. The Directories list displays the defined search path.
The debugger searches the listed directories in order from top to bottom.

If two files have the same name and are located in different directories,
the file located in the directory that appears highest in the Directories
list takes precedence.

B-5

B Reported Limitations and Tips

• New. To add a new directory to the Directories list, click New.
Enter the full path or click browse [...] to navigate to the appropriate
directory. By default, the new directory is added to the bottom of the list.

• Delete. Select a directory in the Directories list, then click Delete to
remove that directory from the list.

• Up. Select a directory in the Directories list, then click Up to move
that directory higher in the list.

• Down. Select a directory in the Directories list, then click Down to
move that directory lower in the list.

3 Click OK to close the Customize dialog box and save your changes.

C54x XPC Register Can Be Modified Only Through
the PC Register
You cannot modify the XPC register value directly using regwrite to write
into the register. When you are using extended program addressing in C54x,
you can modify the XPC register by using regwrite to write a 23-bit data
value in the PC register. Along with the 16-bit PC register, this operation also
modifies the 7-bit XPC register that is used for extended program addressing.
On the C54x, the PC register is 23 bits (7 bits in XPC + 16 bits in PC).

You can then read the XPC register value using regread.

Working with More Than One Installed Version of
Code Composer Studio
When you have more than one version of Code Composer Studio installed on
your machine, you cannot select which CCS version MATLAB Embedded IDE
Link attaches to when you create a ticcs object. If, for example, you have
both CCS for C5000 and CCS for C6000 versions installed, you cannot choose
to connect to the C6000 version rather than the C5000 version.

When you issue the command

cc = ticcs

Embedded IDE Link starts the CCS version you last used. If you last used
your C5000 version, the cc object accesses the C5000 version.

B-6

Reported Issues

Workaround
To make your ticcs object access the correct processor:

1 Start and close the appropriate CCS version before you create the ticcs
object in MATLAB.

2 Create the ticcs object using the boardnum and procnum properties to
select your processor, if needed.

Recall that ccsboardinfo returns the boardnum and procnum values for
the processors that CCS recognizes.

Changing CCS Versions During a MATLAB Session
You can use only one version of CCS in a single MATLAB session. Embedded
IDE Link does not support using multiple versions of CCS in a MATLAB
session. To use another CCS version, exit MATLAB software and restart it.
Then create your links to the new version of CCS.

MATLAB Hangs When Code Composer Studio Cannot
Find a Board
In MATLAB software, when you create a ticcs object, the construction
process for the object automatically starts CCS. If CCS cannot find a processor
that is connected to your PC, you see a message from CCS like the following
DSP Device Driver dialog box that indicates CCS could not initialize the
processor.

B-7

B Reported Limitations and Tips

Four options let you decide how to respond to the failure:

• Abort — Closes CCS and suspends control for about 30 seconds. If you
used MATLAB software functions to open CCS, such as when you create
a ticcs object, the system returns control to MATLAB command window
after a considerable delay, and issues this warning:

??? Unable to establish connection with Code Composer Studio.

• Ignore— Starts CCS without connecting to any processor. In the CCS IDE
you see a status message that says EMULATOR DISCONNECTED in the
status area of the IDE. If you used MATLAB to start CCS, you get control
immediately and Embedded IDE Link creates the ticcs object. Because

B-8

Reported Issues

CCS is not connected to a processor, you cannot use the object to perform
processor operations from MATLAB, such as loading or running programs.

• Retry— CCS tries again to initialize the processor. If CCS continues not
to find your hardware processor, the same DSP Device Driver dialog box
reappears. This process continues until either CCS finds the processor or
you choose one of the other options to respond to the warning.

One more option, Diagnostic, lets you enter diagnostic mode if it is enabled.
Usually, Diagnostic is not available for you to use.

Using Mapped Drives
Limitations in Code Composer Studio do not allow you to load programs after
you set your CCS working directory to a read-only mapped drive. When
you set the CCS working directory to a mapped drive for which you do not
have write permissions, you cannot load programs from any location. Load
operations fail with an Application Error dialog box.

The following combination of commands does not work:

1 cd(cc,'mapped_drive_letter') % Change CCS working directory to
read-only mapped drive.

2 load(cc,'program_file') % Loading any program fails.

Uninstalling Code Composer Studio 3.3 Prevents
Embedded IDE Link From Connecting
Description On a machine where CCS V3.3 and CCS V3.1 are installed,
uninstalling V3.3 makes V3.1 unusable from MATLAB. This is because the
CCS V3.3 uninstaller leaves stale registry entries in the Windows Registry
that prevent MATLAB from connecting to CCS V3.1.

Texas Instruments has documented this uninstall
problem and the solution on their Web site at
http://www-k.ext.ti.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=76,E=0000000000008373418

Updated information on this issue may also be available
from the Bug Reports section of www.mathworks.com at
http://www.mathworks.com/support/bugreports/379676

B-9

http://bo-01-ah.mathworks.com:8080/businessobjects/enterprise115/desktoplaunch/InfoView/logon/logon.do
http://www.mathworks.com/support/bugreports/379676

B Reported Limitations and Tips

B-10

Index

IndexA
activate 7-2
add 7-4
address 7-6
address, read 7-108
animate 7-9
apiversion 2-48
Archive_library 3-60
asynchronous scheduling 3-5

B
block limitations using model reference 3-61
boardnum 2-49
boards, selecting 3-3
build 7-10
build configuration

compiler options, default 3-47
custom 3-47
default 3-47

build configuration, new 7-89

C
C280x/C28x3x hardware interrupt block 9-2
C280x/C28x3x Hardware Interrupt block 9-2
c281x hardware interrupt block 9-8
C6000 model reference 3-59
C6711 DSK

TLC debugging options 3-39
CCS IDE objects

tutorial about using 2-2
CCS status 7-70
ccsappexe 2-49
ccsboardinfo 7-14
cd 7-20
channel, open 7-92
close 7-22
Code Composer Studio

MATLAB API 1-3

code profiling 7-95
configuration parameters

pane 10-4
buildAction 10-21
Compiler options string: 10-16
configPILBlockAction 10-27
DiagnosticActions 10-33
Export IDE link handle to base

workspace: 10-5
gui item name 10-12
IDE link handle name: 10-7
ideObjBuildTimeout 10-29
ideObjTimeout 10-31
Interrupt overrun notification

function: 10-26
Linker options string: 10-18
overrunNotificationMethod 10-24
Profile real-time execution 10-8
profileBy 10-10
projectOptions 10-14
System stack size (MAUs): 10-20

configure 7-25
configure the software timer 9-47
CPU clock speed 9-47
create custom target function library 3-58
current CPU clock speed 9-47
custom build configuration 3-47
custom compiler options 3-47
custom data types 2-54
custom source code 3-48
custom type definitions 2-54

D
Data Type Manager 2-54
data types

managing 2-54
datatypemanager 7-27
debug point, insert 7-56
default build configuration 3-47

Index-1

Index

default compiler options 3-47
dir 7-42
disable 7-43
discrete solver 3-33
display 7-45
DSP/BIOS

adding to generated code 3-42

E
Embedded IDE Link™

code generation options 3-42
listing link functions 2-41
run-time options 3-42

enable 7-47
execute program 7-135
execution in timer-based models 3-10
execution profiling

subsystem 4-12
task 4-10

export filters to CCS IDE from FDATool 5-1
select the export data type 5-6
set the Export mode option 5-5

F
FDATool. See export filters to CCS IDE from

FDATool
file, new 7-89
file, remove 7-131
file, save 7-139
fixed-step solver 3-33
flush 7-49
functions

overloading 2-45

G
GEL file, load 7-86
generate optimized code 3-42
generate_code_only option 3-42

get symbol table 7-141

H
halt 7-51
Hardware Interrupt block 9-14

I
Idle Task block 9-17
import filter coefficients from FDATool.. See

FDATool
info 7-53
insert 7-56
intrinsics. See target function library
isenabled 7-60
isreadable 7-62
isrtdxcapable 7-67
isrunning 7-68
issues, using PIL 4-7
isvisible 7-70
iswritable 7-72

L
link properties

about 2-46 2-48
apiversion 2-48
boardnum 2-49
ccsappexe 2-49
numchannels 2-49
page 2-50
procnum 2-50
quick reference table 2-46
rtdx 2-51
rtdxchannel 2-52
timeout 2-52
version 2-52

link properties, details about 2-48
links

closing CCS IDE 2-18

Index-2

Index

closing RTDX 2-38
communications for RTDX 2-29
creating links for RTDX 2-26
details 2-48
introducing the tutorial for using links for

RTDX 2-21
loading files into CCS IDE 2-10
quick reference 2-46
running applications using RTDX 2-31
tutorial about using links for RTDX 2-20
working with your processor 2-12

list 7-76
list object 7-76
list variable 7-76
load 7-86

M
manage data types 7-27
managing data types 2-54
matrix, read from RTDX 7-114
Memory Allocate block 9-20
Memory Copy block 9-26
memory, write 7-153
model execution 3-5
model reference 3-59

about 3-59
Archive_library 3-60
block limitations 3-61
modelreferencecompliant flag 3-62
setting build action 3-60
Target Preferences blocks 3-61
using 3-60

model schedulers 3-5
modelreferencecompliant flag 3-62
msgcount 7-88

N
new

build configuration 7-89
file 7-89
project 7-89

numchannels 2-49

O
object

ticcs 2-42
object, read 7-108
objects

creating objects for CCS IDE 2-8
introducing the objects for CCS IDE

tutorial 2-2
selecting processors for CCS IDE 2-6
tutorial about using Automation Interface

for CCS IDE 2-2
open channel 7-92
optimization, processor specific 3-42
overloading 2-45

P
page 2-50
PIL block 4-4
PIL cosimulation

overview 4-3
PIL issues 4-7
process, halt 7-51
processor

general code generation options 3-40
processor configuration options

build action 3-42
generate code only 3-38
overrun action 3-44
system target file 3-37

processor function library. See target function
library

processor information, get 7-53
processor specific optimization 3-42

Index-3

Index

processor status 7-68
processor, reset 7-132
processor, write 7-153
procnum 2-50
profile 7-95
profiling code 7-95
profiling execution

by subsystem 4-12
by task 4-10

program counter, restore 7-133
program file, load 7-86
program file, reload 7-129
program, run 7-135
project generation

selecting the board 3-3
project, new 7-89
project, save 7-139
properties

link properties 2-46

R
read

address 7-108
object 7-108

read register 7-121
readmat 7-114
readmsg 7-117
Real-Time Workshop solver options 3-33
Real—Time Workshop build options

generate_code_only 3-42
regread 7-121
regwrite 7-125
reload 7-129
remove 7-131
remove file 7-131
replacing generated code 3-48
replacing linker directives 3-48
reset 7-132
restart 7-133

restore program counter 7-133
rtdx 2-51
RTDX

isenabled 7-60
isrtdxcapable 7-67
message count 7-88
open channel 7-92
read message 7-117
readmat 7-114
writemsg 7-158

RTDX channel, flush 7-49
RTDX links

tutorial about using 2-20
RTDX message count 7-88
RTDX, disable 7-43
RTDX, enable 7-47
rtdxchannel 2-52
run 7-135

S
save 7-139
selecting boards 3-3
set stack size 3-45
set visibility 7-151
solver option settings 3-33
source code replacement 3-48
stack size, set stack size 3-45
stop process 7-51
symbol 7-141
symbol table, getting symbols 7-141
synchronous scheduling 3-10

T
target function library

assessing execution time after selecting a
library 3-55

create a custom library 3-58
optimization 3-52

Index-4

Index

seeing the library changes in your generated
code 3-56

selecting the library to use 3-54
use in the build process 3-53
using with link software 3-52
viewing library tables 3-58
when to use 3-54

Target Preferences blocks in referenced
models 3-61

Target Preferences/Custom Board block 9-45
TFL. See target function library
ticcs 2-42 7-143
timeout 2-52
timer, configure 9-47
timer-based models, execution 3-10
timer-based scheduler 3-10
timing 3-5
tutorials

links for RTDX 2-20
objects for CCS 2-2

typedefs 2-56
about 2-54
adding 2-56
managing 2-56
removing 2-56

V
version 2-52
view CCS 7-70
viewing target function libraries 3-58
visibility, setting 7-151
visible 7-151

W
write 7-153
write register 7-125
writemsg 7-158

Index-5

	toc
	Getting Started
	Product Overview
	Automation Interface
	Project Generator
	Verification
	Processor in the Loop Cosimulation
	Execution Profiling

	Product Features Supported for Each Processor Family

	Configuration Information
	Verifying Your Code Composer Studio Installation

	Software Requirements

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Functions for Working With Embedded IDE Link
	Methods for Working with ticcs Objects
	Methods for Embedded Objects
	Running Code Composer Studio Software on Your Desktop — Visibili
	Running the Interactive Tutorial

	Selecting Your Processor
	Creating and Querying Objects for CCS IDE
	Loading Files into CCS
	Working with Projects and Data
	Closing the Links or Cleaning Up CCS IDE

	Getting Started with RTDX
	Introducing the Tutorial for Using RTDX
	Functions From Objects for CCS IDE
	Functions From the RTDX Class

	Creating the ticcs Objects
	Configuring Communications Channels
	Running the Application
	Closing the Connections and Channels or Cleaning Up
	Listing Functions

	Constructing ticcs Objects
	Example — Constructor for ticcs Objects

	ticcs Properties and Property Values
	Overloaded Functions for ticcs Objects
	ticcs Object Properties
	Quick Reference to ticcs Object Properties
	Details About ticcs Object Properties
	apiversion
	boardnum
	ccsappexe
	numchannels
	page
	procnum
	rtdx
	rtdxchannel
	timeout
	version

	Managing Custom Data Types with the Data Type Manager
	Adding Custom Type Definitions to MATLAB
	To Add a Typedef to MATLAB

	Project Generator
	Introducing Project Generator
	Project Generation and Board Selection
	Schedulers and Timing
	Configuring Models for Asynchronous Scheduling
	Before
	After
	Algorithm Inside the Function Call Subsystem Block

	Cases for Using Asynchronous Scheduling
	Idle Task
	Hardware Interrupt Triggered Task

	Comparing Synchronous and Asynchronous Interrupt Processing
	Using Synchronous Scheduling
	Using Asynchronous Scheduling
	Multitasking Scheduler Examples
	Three Odd-Rate Tasks Without Preemption and Overruns
	Two Tasks with the Base-Rate Task Overrunning, No Preemption
	Two Tasks with Sub-Rate 1 Overrunning Without Preemption
	Three Even-Rate Tasks with Preemption and No Overruns
	Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rat
	Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overrun
	Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-

	Project Generator Tutorial
	Creating the Model
	Adding the Target Preferences Block to Your Model
	Specify Configuration Parameters for Your Model
	Setting Solver Parameters
	Setting Real-Time Workshop Code Generation Parameters
	Setting Embedded IDE Link Parameters
	Building Your Project

	Setting Code Generation Parameters for TI Processors
	Setting Model Configuration Parameters
	Target File Selection
	System target file

	Build Process
	Custom Storage Class
	Generate code only

	Report Options
	Create Code Generation report
	Launch report automatically

	Debug Pane Parameters
	Optimization Pane Parameters
	Embedded IDE Link Pane Parameters
	Runtime Options
	Build action
	Interrupt overrun notification method
	Interrupt overrun notification function
	Project Options
	Compiler options string
	Linker options string
	System stack size (MAUs)
	Code Generation
	Link Automation
	Maximum time to complete IDE operations (s)
	Diagnostic Option

	Default Project Configuration — Custom
	Compiler Options in Custom Project Configuration

	Using Custom Source Files in Generated Projects
	Preparing to Replace Generated Files With Custom Files
	Determining the Name of the File to Replace
	Creating the Replacement File

	Replacing Generated Source Files with Custom Files When You Gene

	Optimizing Embedded Code with Target Function Libraries
	About Target Function Libraries and Optimization
	Code Generation Using the Target Function Library

	Using a Processor-Specific Target Function Library to Optimize C
	Process of Determining Optimization Effects Using Real-Time Prof
	Reviewing Processor-Specific Target Function Library Changes in
	Reviewing Code Manually
	Using Model-to-Code Tracing
	Using a File Differencing Scheme

	Reviewing Target Function Library Operators and Functions
	Creating Your Own Target Function Library

	Model Reference
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring processors to Use Model Reference

	Verification
	What Is Verification?
	Verifying Generated Code via Processor-in-the-Loop
	What is Processor-in-the-Loop Cosimulation?
	About the PIL Block
	Preparing Your Model to Generate a PIL Application
	Setting Model Configuration Parameters to Generate the PIL Appli
	Creating the PIL Block Application from a Model Subsystem
	Running Your PIL Application to Perform Cosimulation and Verific
	PIL Issues and Limitations
	Generic PIL Issues
	Real-Time Workshop grt.tlc-Based Targets Not Supported

	Profiling Code Execution in Real-Time
	Overview
	Profiling Execution by Tasks
	Profiling Execution by Subsystems

	System Stack Profiling
	Overview
	Profiling System Stack Use

	Exporting Filter Coefficients from FDATool
	About FDATool
	Preparing to Export Filter Coefficients to Code Composer Studio
	Features of a Filter
	Selecting the Export Mode
	Choosing the Export Data Type
	To Choose the Export Data Type
	How FDATool Determines the Export Suggested Data Type

	Exporting Filter Coefficients to Your Code Composer Studio Proje
	Exporting Filter Coefficients from FDATool to the CCS IDE Editor
	Reviewing ANSI C Header File Contents

	Preventing Memory Corruption When You Export Coefficients to Pro
	Allocating Sufficient or Extra Memory for Filter Coefficients
	Example: Using the Exported Header File to Allocate Extra Proces
	Replacing Existing Coefficients in Memory with Updated Coefficie
	Example: Changing Filter Coefficients Stored on Your Processor

	Function Reference
	Operations on Objects for CCS IDE
	Operations on Objects for RTDX

	Functions — Alphabetical List
	Support Coemulation and OMAP

	Block Reference
	Block Library: idelinklib_ticcs
	Block Library: idelinklib_common

	Blocks — Alphabetical List
	Configuration Parameters
	Embedded IDE Link Pane
	Overview
	Export IDE link handle to base workspace
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	IDE link handle name
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Profile real-time execution
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile by
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of profiling samples to collect
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Project options
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Compiler options string
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Linker options string
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System stack size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build action
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Interrupt overrun notification method
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Interrupt overrun notification function
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	PIL block action
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to build project (s)
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time to complete IDE operations (s)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Source file replacement
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Supported Processors
	Supported Platforms
	Product Features Supported by Each Processor or Family
	Coemulation Support
	Supported Processors and Simulators
	Custom Board Support

	Supported Versions of Code Composer Studio

	Reported Limitations and Tips
	Reported Issues
	Demonstration Programs Do Not Run Properly Without Correct GEL F
	Error Accessing type Property of ticcs Object Having Size Greate
	Changing Values of Local Variables Does Not Take Effect
	Code Composer Studio Cannot Find a File After You Halt a Program
	File Not Found
	Defining a Search Path for Source Files
	To Specify Search Path Directories

	C54x XPC Register Can Be Modified Only Through the PC Register
	Working with More Than One Installed Version of Code Composer St
	Workaround

	Changing CCS Versions During a MATLAB Session
	MATLAB Hangs When Code Composer Studio Cannot Find a Board
	Using Mapped Drives
	Uninstalling Code Composer Studio 3.3 Prevents Embedded IDE Link

	Index

	tables
	File Types and Extensions Supported by add and CCS IDE
	Examples of Address Property Values
	Examples of Address Property Values
	File Types and Extensions Supported by new and CCS IDE
	Examples of Address Property Values
	Examples of Address Property Values
	C280x Peripheral Interrupt Vector Values
	C281x Peripheral Interrupt Vector Values
	Features by Processor Family

